Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1319
Question Number 80587 Answers: 1 Comments: 6
Question Number 80586 Answers: 0 Comments: 1
Question Number 80585 Answers: 0 Comments: 9
Question Number 80580 Answers: 2 Comments: 0
$${Find}\:{general}\:{solution}\:{for}\:{k}\:{such}\:{that} \\ $$$$\mathrm{7}^{{k}} \equiv\mathrm{1}\:{mod}\:\left(\mathrm{35}\right) \\ $$
Question Number 80559 Answers: 0 Comments: 0
Question Number 80550 Answers: 1 Comments: 1
Question Number 80574 Answers: 1 Comments: 2
Question Number 80543 Answers: 1 Comments: 6
Question Number 80540 Answers: 0 Comments: 1
Question Number 80539 Answers: 0 Comments: 1
Question Number 80529 Answers: 0 Comments: 1
Question Number 80519 Answers: 2 Comments: 2
$$\mathrm{g}\left({x}\right)=\mathrm{2}{cos}^{\mathrm{2}} {x}+{sin}\left(\mathrm{2}{x}\right). \\ $$$${g}'\left({x}\right)=\:..........? \\ $$
Question Number 80515 Answers: 0 Comments: 1
$$\int\frac{{dx}}{\left(\mathrm{1}+{x}^{\phi} \right)^{\phi} } \\ $$
Question Number 80508 Answers: 0 Comments: 4
$${solve}\:{the}\:{D}.{E}\: \\ $$$${x}^{\mathrm{2}} +\left({y}^{\mathrm{2}} +\mathrm{1}\right){dx}+{y}\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\:{dy}=\mathrm{0} \\ $$
Question Number 80505 Answers: 0 Comments: 8
$$\mathrm{Given}\:\mathrm{that}\:\:\mathrm{7}^{{k}} \:\equiv\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{15}\right) \\ $$$$\left.\mathrm{a}\right)\:\mathrm{Write}\:\mathrm{down}\:\mathrm{three}\:\mathrm{values}\:\mathrm{of}\:{k}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\: \\ $$$$\mathrm{the}\:\mathrm{equation}\:\:\mathrm{7}^{{k}} \:\equiv\:\mathrm{1}\:\left({mod}\:\mathrm{15}\right) \\ $$
Question Number 80493 Answers: 0 Comments: 4
$$\mathrm{Solve}\:\mathrm{for}\:\:\mathrm{a},\:\mathrm{b}\:\mathrm{and}\:\mathrm{c} \\ $$$$\:\:\:\:\:\:\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:\:=\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:.....\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\mathrm{abc}\:\:\:=\:\:\:−\:\frac{\mathrm{1}}{\mathrm{4}}\:\:\:\:\:......\:\left(\mathrm{iii}\right) \\ $$$$\:\:\:\:\:\:\mathrm{ab}\:+\:\mathrm{ac}\:+\:\mathrm{bc}\:\:\:=\:\:\frac{\mathrm{3}}{\mathrm{2}}\:\:\:\:\:\:\:......\:\left(\mathrm{iv}\right) \\ $$
Question Number 80485 Answers: 0 Comments: 1
$${what}\:{is}\:{the}\:{king}\:\:{rule}? \\ $$
Question Number 80477 Answers: 0 Comments: 5
Question Number 80475 Answers: 0 Comments: 0
Question Number 80503 Answers: 1 Comments: 0
$$\mathrm{prove}\:\mathrm{that}\:\mathrm{they}\:\mathrm{are}\:\mathrm{infinitely}\:\mathrm{many} \\ $$$$\mathrm{primes} \\ $$
Question Number 80504 Answers: 0 Comments: 2
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system}\:\mathrm{of}\:\mathrm{congruences} \\ $$$${x}\:\equiv\:\mathrm{2}\:\left(\mathrm{mod}\:\mathrm{3}\right) \\ $$$${x}\:\equiv\:\mathrm{5}\left(\:\mathrm{mod}\:\mathrm{7}\right) \\ $$$$\: \\ $$
Question Number 80501 Answers: 0 Comments: 0
$$\frac{\mathrm{5}}{\mathrm{7}}\:\:=\:\:\frac{{a}_{\mathrm{2}} }{\mathrm{2}!}\:+\:\frac{{a}_{\mathrm{3}} }{\mathrm{3}!}\:+\:\frac{{a}_{\mathrm{4}} }{\mathrm{4}!}\:+\:\frac{{a}_{\mathrm{5}} }{\mathrm{5}!}\:+\:\frac{{a}_{\mathrm{6}} }{\mathrm{6}!}\:+\:\frac{{a}_{\mathrm{7}} }{\mathrm{7}!} \\ $$$$\mathrm{0}\:\:\leqslant\:{a}_{{i}} \:<\:{i}\:\:,\:\:{a}_{{i}} \:\:\in\:\mathbb{N} \\ $$$${Find}\:\:{possible}\:\:{value}\:\:{of}\:\:\:{a}_{\mathrm{2}} \:+\:{a}_{\mathrm{3}} \:+\:{a}_{\mathrm{4}} \:+\:{a}_{\mathrm{5}} \:+\:{a}_{\mathrm{6}} \:+\:{a}_{\mathrm{7}} \:\:. \\ $$
Question Number 80455 Answers: 1 Comments: 2
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}+{mx}}{\mathrm{1}−{nx}}\right)^{\frac{{mn}}{{x}}} \\ $$
Question Number 80452 Answers: 0 Comments: 1
$${find}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right)}{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} \:+\mathrm{3}}{dx} \\ $$
Question Number 80451 Answers: 0 Comments: 1
$${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{cos}\left(\pi{x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 80448 Answers: 1 Comments: 3
$${Hello}\:{All}\:{of}\:{You}\:{verry}\:{Nice}\:{Day},\:{God}\:{bless}\:{You}\:{love}\:{peace}\:{and}\: \\ $$$${happiness}\: \\ $$$${Solve}\:{for}\:\left({x},{y}\right)\in\mathbb{R}^{\mathrm{2}} \: \\ $$$$\begin{cases}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{2}{x}+\mathrm{3}{y}+\mathrm{1}}\\{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} =\mathrm{4}{x}^{\mathrm{2}} +\mathrm{9}{y}^{\mathrm{2}} +\mathrm{12}{xy}+\mathrm{2}{x}^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{18}}\end{cases} \\ $$$$ \\ $$
Pg 1314 Pg 1315 Pg 1316 Pg 1317 Pg 1318 Pg 1319 Pg 1320 Pg 1321 Pg 1322 Pg 1323
Terms of Service
Privacy Policy
Contact: info@tinkutara.com