Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1319

Question Number 75617    Answers: 0   Comments: 1

Demonstrate that ∀ x ∈]0;(π/2)[ tanx=((1−cos(2x))/(sin(2x)))

$$\left.\mathrm{Demonstrate}\:\mathrm{that}\:\forall\:\mathrm{x}\:\in\right]\mathrm{0};\frac{\pi}{\mathrm{2}}\left[\right. \\ $$$$\mathrm{tanx}=\frac{\mathrm{1}−\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{sin}\left(\mathrm{2x}\right)} \\ $$

Question Number 75616    Answers: 1   Comments: 7

A_1 =2 B_1 =1 A_(n+1) =A_n −8B_n B_(n+1) =A_n +7B_n find A_n =?, B_n =?

$${A}_{\mathrm{1}} =\mathrm{2} \\ $$$${B}_{\mathrm{1}} =\mathrm{1} \\ $$$${A}_{{n}+\mathrm{1}} ={A}_{{n}} −\mathrm{8}{B}_{{n}} \\ $$$${B}_{{n}+\mathrm{1}} ={A}_{{n}} +\mathrm{7}{B}_{{n}} \\ $$$${find}\:{A}_{{n}} =?,\:{B}_{{n}} =? \\ $$

Question Number 75615    Answers: 0   Comments: 0

Question Number 75602    Answers: 1   Comments: 0

If 2x^2 −mxy+3y^2 −5y−2 have two rational factor then find m

$${If}\:\mathrm{2}{x}^{\mathrm{2}} −{mxy}+\mathrm{3}{y}^{\mathrm{2}} −\mathrm{5}{y}−\mathrm{2} \\ $$$${have}\:{two}\:{rational}\:{factor}\:{then} \\ $$$${find}\:\:\:{m} \\ $$

Question Number 75598    Answers: 0   Comments: 1

Question Number 75597    Answers: 0   Comments: 1

Question Number 75593    Answers: 1   Comments: 0

u^3 +v^3 =a , s^3 +m^3 =b , uv=(s+m)^2 , sm=(u+v)^2 . Find u,v,s,m in terms of a,b.

$${u}^{\mathrm{3}} +{v}^{\mathrm{3}} ={a}\:,\:\:{s}^{\mathrm{3}} +{m}^{\mathrm{3}} ={b}\:, \\ $$$${uv}=\left({s}+{m}\right)^{\mathrm{2}} \:,\:\:{sm}=\left({u}+{v}\right)^{\mathrm{2}} \:. \\ $$$${Find}\:{u},{v},{s},{m}\:\:{in}\:{terms}\:{of}\:{a},{b}. \\ $$

Question Number 75590    Answers: 0   Comments: 0

Question Number 75580    Answers: 0   Comments: 1

Define the inversion transformation of Z=a + ib where i is imaginary line passing through the circle of inversion.

$$\mathrm{Define}\:\mathrm{the}\:\mathrm{inversion}\:\mathrm{transformation} \\ $$$$\mathrm{of}\:\mathrm{Z}=\mathrm{a}\:+\:\mathrm{ib}\:\mathrm{where}\:\mathrm{i}\:\mathrm{is}\:\mathrm{imaginary}\:\mathrm{line}\: \\ $$$$\mathrm{passing}\:\mathrm{through}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{inversion}. \\ $$

Question Number 75577    Answers: 1   Comments: 0

∫_(−∞) ^∞ xdx is divergent or convergent?

$$\int_{−\infty} ^{\infty} {xdx}\:{is}\:{divergent}\:{or}\:{convergent}? \\ $$

Question Number 75570    Answers: 2   Comments: 1

Question Number 75569    Answers: 0   Comments: 4

Question Number 75553    Answers: 0   Comments: 3

lim_(x→0) (1/x)((1/(sin(x)))−(3/(sin(3x))))

$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\mathrm{1}}{{x}}\left(\frac{\mathrm{1}}{{sin}\left({x}\right)}−\frac{\mathrm{3}}{{sin}\left(\mathrm{3}{x}\right)}\right) \\ $$

Question Number 75552    Answers: 1   Comments: 1

Question Number 75547    Answers: 2   Comments: 5

Evaluate: Σ_(n = 0) ^∞ ((1/(5n + 1)))

$$\:\:\:\:\:\:\mathrm{Evaluate}:\:\:\:\:\:\underset{\mathrm{n}\:=\:\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{5n}\:+\:\mathrm{1}}\right) \\ $$

Question Number 75538    Answers: 0   Comments: 0

Question Number 75530    Answers: 2   Comments: 4

Question Number 75527    Answers: 1   Comments: 1

Question Number 75524    Answers: 0   Comments: 0

Suppose that X and Y have a discrete joint distribution for which the joint p.f is defined as follows f(x,y)={ c∣x+y∣ for x=−2,−1,0,1,2 and y=−2,−1,0,1,2 0 other wise Determine (a) the value of the constant of c (b) pr(X=0 and Y=−2) (e) pr(X=1) (d) pr(∣x−y∣≤1) pleas sir help me

$${Suppose}\:{that}\:{X}\:{and}\:{Y}\:{have}\:{a}\:{discrete}\:{joint}\:{distribution}\:{for}\:{which}\:{the}\:{joint}\:{p}.{f}\:\:{is}\:{defined}\:{as}\:{follows}\: \\ $$$${f}\left({x},{y}\right)=\left\{\:{c}\mid{x}+{y}\mid\:{for}\:{x}=−\mathrm{2},−\mathrm{1},\mathrm{0},\mathrm{1},\mathrm{2}\:{and}\:{y}=−\mathrm{2},−\mathrm{1},\mathrm{0},\mathrm{1},\mathrm{2}\right. \\ $$$$\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{other}\:{wise} \\ $$$${Determine}\:\left({a}\right)\:{the}\:{value}\:{of}\:{the}\:{constant}\:{of}\:{c} \\ $$$$\left({b}\right)\:{pr}\left({X}=\mathrm{0}\:{and}\:{Y}=−\mathrm{2}\right) \\ $$$$\left({e}\right)\:{pr}\left({X}=\mathrm{1}\right) \\ $$$$\left({d}\right)\:{pr}\left(\mid{x}−{y}\mid\leqslant\mathrm{1}\right) \\ $$$${pleas}\:{sir}\:{help}\:{me} \\ $$

Question Number 75521    Answers: 0   Comments: 2

Find the angle between the lines whose direction cosines are given by l+m+n = 0 and l^2 +m^2 −n^2 = 0 ??

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{between}\:\mathrm{the}\:\mathrm{lines} \\ $$$$\mathrm{whose}\:\mathrm{direction}\:\mathrm{cosines}\:\mathrm{are}\:\mathrm{given} \\ $$$$\mathrm{by}\:{l}+{m}+{n}\:=\:\mathrm{0}\:\mathrm{and}\:{l}^{\mathrm{2}} +{m}^{\mathrm{2}} −{n}^{\mathrm{2}} \:=\:\mathrm{0}\:?? \\ $$

Question Number 75518    Answers: 1   Comments: 0

Question Number 75512    Answers: 1   Comments: 2

Question Number 75505    Answers: 1   Comments: 2

Question Number 75504    Answers: 1   Comments: 0

please sirs i would like that you help me to show this: sin((π/3)+x)sin((π/(3 ))−x)=(3/4)−sin^2 x

$$\mathrm{please}\:\mathrm{sirs}\:\mathrm{i}\:\mathrm{would}\:\mathrm{like}\:\mathrm{that}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to} \\ $$$$\mathrm{show}\:\mathrm{this}: \\ $$$$\mathrm{sin}\left(\frac{\pi}{\mathrm{3}}+\mathrm{x}\right)\mathrm{sin}\left(\frac{\pi}{\mathrm{3}\:}−\mathrm{x}\right)=\frac{\mathrm{3}}{\mathrm{4}}−\mathrm{sin}^{\mathrm{2}} \mathrm{x} \\ $$

Question Number 75502    Answers: 0   Comments: 2

Solve it in ]−π;π] sin(2x)=cos(x)

$$\left.\mathrm{S}\left.\mathrm{olve}\:\mathrm{it}\:\mathrm{in}\:\right]−\pi;\pi\right] \\ $$$$\mathrm{sin}\left(\mathrm{2x}\right)=\mathrm{cos}\left(\mathrm{x}\right) \\ $$

Question Number 75484    Answers: 1   Comments: 0

If θ is eleminated from the equation x=a cos(θ−α) and y=b cos(θ−β) then prove that (x^2 /a^2 ) + (y^2 /b^2 ) −((2xy)/(ab)) cos(α−β) = sin^2 (α−β)

$$\mathrm{If}\:\theta\:\mathrm{is}\:\mathrm{eleminated}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{equation}\:{x}={a}\:{cos}\left(\theta−\alpha\right)\:\mathrm{and} \\ $$$${y}={b}\:{cos}\left(\theta−\beta\right)\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:+\:\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:−\frac{\mathrm{2}{xy}}{{ab}}\:{cos}\left(\alpha−\beta\right)\: \\ $$$$=\:{sin}^{\mathrm{2}} \left(\alpha−\beta\right) \\ $$

  Pg 1314      Pg 1315      Pg 1316      Pg 1317      Pg 1318      Pg 1319      Pg 1320      Pg 1321      Pg 1322      Pg 1323   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com