Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1318

Question Number 74498    Answers: 1   Comments: 1

1) calculte A_n =∫_0 ^∞ e^(−nx) [e^x ] dx with n integr and n≥2 2)find lim_(n→+∞) n^n A_n

$$\left.\mathrm{1}\right)\:{calculte}\:\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{e}^{−{nx}} \left[{e}^{{x}} \right]\:{dx}\:\:\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{2} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:{n}^{{n}} \:{A}_{{n}} \\ $$

Question Number 74503    Answers: 0   Comments: 1

Question Number 74492    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctan(x^2 ))/(x^2 +9))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$

Question Number 74474    Answers: 1   Comments: 1

Question Number 74473    Answers: 1   Comments: 2

Question Number 74456    Answers: 1   Comments: 2

Question Number 74484    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((arctan(2x))/(x^2 +3))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} +\mathrm{3}}{dx} \\ $$

Question Number 74483    Answers: 1   Comments: 2

Question Number 74446    Answers: 1   Comments: 0

Question Number 74431    Answers: 0   Comments: 11

Question Number 74429    Answers: 0   Comments: 2

Question Number 74455    Answers: 1   Comments: 0

if K=(x∈R 2x−1+∣2x−1∣=0 )and J=(x∈R −x(2x+1)≤−1) find J−K.

$${if}\:{K}=\left({x}\in\mathbb{R}\:\mathrm{2}{x}−\mathrm{1}+\mid\mathrm{2}{x}−\mathrm{1}\mid=\mathrm{0}\:\right){and} \\ $$$${J}=\left({x}\in\mathbb{R}\:−{x}\left(\mathrm{2}{x}+\mathrm{1}\right)\leqslant−\mathrm{1}\right)\:{find}\:{J}−{K}. \\ $$

Question Number 74423    Answers: 0   Comments: 1

Question Number 74419    Answers: 0   Comments: 1

Question Number 74418    Answers: 1   Comments: 0

Question Number 74415    Answers: 1   Comments: 1

Question Number 74412    Answers: 0   Comments: 0

a,b,c are given real constants. p,q,r,t are unknowns from which we can choose values of two of them (non zero) and have to determine the other two (non zero), obeying two equations given below p^2 +q(1+bq)t^2 +q(ap+br)t +r(1+bq)t+r(ap+br) = 0 pt+q(a+cq)t^2 +r(a+cq)t +cqrt+cr^2 = 0 Can this be done solving a quadratic eq. and none higher..?

$${a},{b},{c}\:{are}\:{given}\:{real}\:{constants}. \\ $$$${p},{q},{r},{t}\:{are}\:{unknowns}\:{from}\:{which} \\ $$$${we}\:{can}\:{choose}\:{values}\:{of}\:{two}\:{of} \\ $$$${them}\:\left({non}\:{zero}\right)\:{and}\:{have}\:{to}\: \\ $$$${determine}\:{the}\:{other}\:{two}\:\left({non}\:{zero}\right), \\ $$$${obeying}\:\:{two}\:{equations}\:{given}\:{below} \\ $$$$\:{p}^{\mathrm{2}} +{q}\left(\mathrm{1}+{bq}\right){t}^{\mathrm{2}} +{q}\left({ap}+{br}\right){t} \\ $$$$\:\:\:\:\:+{r}\left(\mathrm{1}+{bq}\right){t}+{r}\left({ap}+{br}\right)\:=\:\mathrm{0} \\ $$$${pt}+{q}\left({a}+{cq}\right){t}^{\mathrm{2}} +{r}\left({a}+{cq}\right){t} \\ $$$$\:\:\:\:+{cqrt}+{cr}^{\mathrm{2}} =\:\mathrm{0} \\ $$$${Can}\:{this}\:{be}\:{done}\:{solving}\:{a} \\ $$$${quadratic}\:{eq}.\:{and}\:{none}\:{higher}..? \\ $$

Question Number 74411    Answers: 1   Comments: 0

A rocket vertically from the surface of the earth with an initil velocity(v_o ) show that its velocity v at height h is given by v_o ^2 −v^2 =((2gh)/(1+(h/R))) where R is radius of earth and g is the acceleration due to gravity at the earth surface

$${A}\:{rocket}\:{vertically}\:{from} \\ $$$${the}\:{surface}\:{of}\:{the}\:{earth} \\ $$$${with}\:{an}\:{initil}\:{velocity}\left({v}_{{o}} \right) \\ $$$${show}\:{that}\:{its}\:{velocity}\:{v} \\ $$$${at}\:{height}\:{h}\:{is}\:{given}\:{by} \\ $$$${v}_{{o}} ^{\mathrm{2}} −{v}^{\mathrm{2}} =\frac{\mathrm{2}{gh}}{\mathrm{1}+\frac{{h}}{{R}}} \\ $$$${where}\:{R}\:{is}\:{radius}\:{of}\:{earth} \\ $$$${and}\:\:{g}\:{is}\:{the}\:{acceleration} \\ $$$${due}\:{to}\:{gravity}\:{at}\:{the}\:{earth} \\ $$$${surface} \\ $$

Question Number 75089    Answers: 0   Comments: 4

∫sin (x^3 +c) dx=? ∫sinh (x^3 +c) dx=?

$$\int\mathrm{sin}\:\left({x}^{\mathrm{3}} +{c}\right)\:{dx}=? \\ $$$$\int\mathrm{sinh}\:\left({x}^{\mathrm{3}} +{c}\right)\:{dx}=? \\ $$

Question Number 74509    Answers: 0   Comments: 4

Question Number 74386    Answers: 0   Comments: 0

z(x)=u(x)+v(x)=Z(K)=U(K)+V(K) f u(x)=Σ(1/(k!)) (d^ k/(dx^ k))(x−xo)

$$\mathrm{z}\left(\mathrm{x}\right)=\mathrm{u}\left(\mathrm{x}\right)+\mathrm{v}\left(\mathrm{x}\right)=\mathrm{Z}\left(\mathrm{K}\right)=\mathrm{U}\left(\mathrm{K}\right)+\mathrm{V}\left(\mathrm{K}\right) \\ $$$$\mathrm{f}\:\mathrm{u}\left(\mathrm{x}\right)=\Sigma\frac{\mathrm{1}}{\mathrm{k}!}\:\frac{\hat {\mathrm{d}k}}{\mathrm{d}\hat {\mathrm{x}k}}\left(\mathrm{x}−\mathrm{x}{o}\right) \\ $$

Question Number 74384    Answers: 1   Comments: 1

Question Number 74383    Answers: 0   Comments: 3

Question Number 74369    Answers: 0   Comments: 0

please state Cramer′s rule

$${please}\:{state}\:{Cramer}'{s}\:{rule} \\ $$

Question Number 74394    Answers: 1   Comments: 4

Question Number 74367    Answers: 0   Comments: 2

Solve : (D^4 +4)y=0 given: y(0)=0 , y′(0)=2 , y′′(0)=0 and y′′′(0)=4.

$${Solve}\:: \\ $$$$\left({D}^{\mathrm{4}} +\mathrm{4}\right){y}=\mathrm{0}\: \\ $$$${given}:\:{y}\left(\mathrm{0}\right)=\mathrm{0}\:,\:{y}'\left(\mathrm{0}\right)=\mathrm{2}\:,\:{y}''\left(\mathrm{0}\right)=\mathrm{0}\:{and} \\ $$$${y}'''\left(\mathrm{0}\right)=\mathrm{4}. \\ $$

  Pg 1313      Pg 1314      Pg 1315      Pg 1316      Pg 1317      Pg 1318      Pg 1319      Pg 1320      Pg 1321      Pg 1322   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com