Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1318

Question Number 82954    Answers: 1   Comments: 3

∫ ((cos 4x−cos 2x)/(sin 4x−cos 2x)) dx

$$\int\:\frac{\mathrm{cos}\:\mathrm{4x}−\mathrm{cos}\:\mathrm{2x}}{\mathrm{sin}\:\mathrm{4x}−\mathrm{cos}\:\mathrm{2x}}\:\mathrm{dx}\: \\ $$

Question Number 82953    Answers: 0   Comments: 3

verify that: cosh.cosh^(−1) (y) = y, if y ∈ (1, + ∞)

$$\mathrm{verify}\:\mathrm{that}:\:\:\:\:\:\:\mathrm{cosh}.\mathrm{cosh}^{−\mathrm{1}} \left(\mathrm{y}\right)\:\:\:=\:\:\:\mathrm{y},\:\:\:\:\:\mathrm{if}\:\:\:\:\:\mathrm{y}\:\:\in\:\:\left(\mathrm{1},\:\:\:+\:\infty\right) \\ $$

Question Number 82952    Answers: 1   Comments: 0

Show that: y + (√(y^2 − 1)) ≥ 1 and 0 < y − (√(y^2 − 1)) ≤ 1 if y ≥ 1

$$\mathrm{Show}\:\mathrm{that}:\:\:\:\:\:\:\mathrm{y}\:\:+\:\:\sqrt{\mathrm{y}^{\mathrm{2}} \:−\:\mathrm{1}}\:\:\:\geqslant\:\:\mathrm{1}\:\:\:\:\:\mathrm{and}\:\:\:\:\mathrm{0}\:\:<\:\:\mathrm{y}\:\:−\:\:\sqrt{\mathrm{y}^{\mathrm{2}} \:−\:\mathrm{1}}\:\:\leqslant\:\:\mathrm{1} \\ $$$$\mathrm{if}\:\:\mathrm{y}\:\:\geqslant\:\mathrm{1} \\ $$

Question Number 82944    Answers: 1   Comments: 2

sin^2 (27^o )+sin^2 (87^o )+sin^2 (33^o ) =

$$ \\ $$$$\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{27}^{\mathrm{o}} \right)+\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{87}^{\mathrm{o}} \right)+\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{33}^{\mathrm{o}} \right)\:= \\ $$

Question Number 82937    Answers: 0   Comments: 2

Find the area between the curves y= log x and y= (log x)^2 .

$$\:\: \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{between}\:\mathrm{the}\:\mathrm{curves} \\ $$$$\:\mathrm{y}=\:\mathrm{log}\:\mathrm{x}\:\:\mathrm{and}\:\mathrm{y}=\:\left(\mathrm{log}\:\mathrm{x}\right)^{\mathrm{2}} . \\ $$

Question Number 82950    Answers: 1   Comments: 1

lim_(x→0) ((((1+tan x))^(1/(3 )) −((1+sin x))^(1/(3 )) )/x^3 ) =

$$ \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}\:}]{\mathrm{1}+\mathrm{tan}\:\mathrm{x}}\:−\sqrt[{\mathrm{3}\:}]{\mathrm{1}+\mathrm{sin}\:\mathrm{x}}}{\mathrm{x}^{\mathrm{3}} }\:=\: \\ $$

Question Number 82929    Answers: 2   Comments: 0

if 2B+A=45° show that; tan B= ((1−2tanA−tan^2 A)/(1+2tanA−tan^2 A))

$${if}\:\mathrm{2}{B}+{A}=\mathrm{45}° \\ $$$${show}\:{that}; \\ $$$${tan}\:{B}=\:\frac{\mathrm{1}−\mathrm{2}{tanA}−{tan}^{\mathrm{2}} {A}}{\mathrm{1}+\mathrm{2}{tanA}−{tan}^{\mathrm{2}} {A}} \\ $$

Question Number 82924    Answers: 1   Comments: 2

lim_(x→0) (((√(tan x))−(√(sin x)))/(x^2 (√x)))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{tan}\:\mathrm{x}}−\sqrt{\mathrm{sin}\:\mathrm{x}}}{\mathrm{x}^{\mathrm{2}} \sqrt{\mathrm{x}}} \\ $$

Question Number 82901    Answers: 1   Comments: 0

Question Number 82897    Answers: 1   Comments: 2

Question Number 82891    Answers: 2   Comments: 0

∫ (1/(√(1−x^4 ))) dx = ?

$$\int\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }}\:\mathrm{dx}\:=\:? \\ $$

Question Number 82887    Answers: 1   Comments: 1

find without using l′hopital lim_(x→0) ((ln(1+cos(x))−ln(2))/x)

$${find}\:{without}\:{using}\:{l}'{hopital} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{ln}\left(\mathrm{1}+{cos}\left({x}\right)\right)−{ln}\left(\mathrm{2}\right)}{{x}} \\ $$

Question Number 82886    Answers: 0   Comments: 2

prove (tanx+cot^2 x)^2 =sex^2 x+cosec^2 x

$${prove}\: \\ $$$$\left({tanx}+{cot}^{\mathrm{2}} {x}\right)^{\mathrm{2}} ={sex}^{\mathrm{2}} {x}+{cosec}^{\mathrm{2}} {x} \\ $$

Question Number 82883    Answers: 1   Comments: 0

[(e^(−2(√x)) /(√x))−(y/(√x)) ] .(dx/dy) = 1 , x ≠ 0

$$\left[\frac{\mathrm{e}^{−\mathrm{2}\sqrt{\mathrm{x}}} }{\sqrt{\mathrm{x}}}−\frac{\mathrm{y}}{\sqrt{\mathrm{x}}}\:\right]\:.\frac{\mathrm{dx}}{\mathrm{dy}}\:=\:\mathrm{1}\:,\:\mathrm{x}\:\neq\:\mathrm{0} \\ $$

Question Number 82881    Answers: 1   Comments: 2

(√(√(...(√(6561))))) = 3^8^x (60 times) find x

$$ \\ $$$$\sqrt{\sqrt{...\sqrt{\mathrm{6561}}}}\:=\:\mathrm{3}^{\mathrm{8}^{\mathrm{x}} } \:\left(\mathrm{60}\:\mathrm{times}\right) \\ $$$$\mathrm{find}\:\mathrm{x} \\ $$

Question Number 82879    Answers: 0   Comments: 1

prove that ((cos^2 a+sin^2 b)/(sin acos a + sin bcos b)) = cot (a+b)

$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$\frac{\mathrm{cos}\:^{\mathrm{2}} \mathrm{a}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{b}}{\mathrm{sin}\:\mathrm{acos}\:\mathrm{a}\:+\:\mathrm{sin}\:\mathrm{bcos}\:\mathrm{b}}\:=\:\mathrm{cot}\:\left(\mathrm{a}+\mathrm{b}\right) \\ $$

Question Number 82878    Answers: 1   Comments: 3

Question Number 82920    Answers: 1   Comments: 0

calculate lim_(x→0) ((ln(1+ln(1+x)))/x)

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{{ln}\left(\mathrm{1}+{ln}\left(\mathrm{1}+{x}\right)\right)}{{x}} \\ $$

Question Number 82919    Answers: 1   Comments: 2

bangun datar

$${bangun}\:{datar} \\ $$

Question Number 82872    Answers: 0   Comments: 1

1)find ∫∫_W ((xdx)/(a^2 +x^2 +y^2 )) with W_a →x^2 +y^2 ≤a^2 and x>0 (a>0) 2)calculate ∫∫_W_1 ((xdx)/(x^2 +y^2 +1))

$$\left.\mathrm{1}\right){find}\:\int\int_{{W}} \:\frac{{xdx}}{{a}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }\:{with} \\ $$$${W}_{{a}} \rightarrow{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:\leqslant{a}^{\mathrm{2}} \:{and}\:{x}>\mathrm{0}\:\:\:\:\:\left({a}>\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:\int\int_{{W}_{\mathrm{1}} } \:\:\:\frac{{xdx}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:+\mathrm{1}} \\ $$

Question Number 82871    Answers: 0   Comments: 1

find ∫∫_([0,1]^2 ) ∣x^2 −y^2 ∣dxdy

$${find}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\mid{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \mid{dxdy} \\ $$

Question Number 82873    Answers: 1   Comments: 2

Question Number 82867    Answers: 0   Comments: 3

hello prove that ∫_0 ^(+∞) sin(x^4 )dx=sin((π/8))∫_0 ^(+∞) e^(−x^4 ) dx? verry nice day Good Bless You

$${hello}\:{prove}\:{that}\:\int_{\mathrm{0}} ^{+\infty} {sin}\left({x}^{\mathrm{4}} \right){dx}={sin}\left(\frac{\pi}{\mathrm{8}}\right)\int_{\mathrm{0}} ^{+\infty} {e}^{−{x}^{\mathrm{4}} } {dx}? \\ $$$${verry}\:{nice}\:{day}\:{Good}\:{Bless}\:{You} \\ $$

Question Number 82843    Answers: 1   Comments: 0

show that (((1+(√3) i)^4 (1+i)^8 )/((cos100°−i sin100)^3 ))=−256

$${show}\:{that} \\ $$$$\frac{\left(\mathrm{1}+\sqrt{\mathrm{3}}\:{i}\right)^{\mathrm{4}} \left(\mathrm{1}+{i}\right)^{\mathrm{8}} }{\left({cos}\mathrm{100}°−{i}\:{sin}\mathrm{100}\right)^{\mathrm{3}} }=−\mathrm{256} \\ $$

Question Number 82839    Answers: 0   Comments: 8

if the first and fifth terms of arithmetic peogression are equal and the seventh and fourtenth terms of another arithmetic are equal then show that the first term from the first arithmetic is equal the tenth from the second one and so sorry because my english is not so good

$${if}\:{the}\:{first}\:{and}\:{fifth}\:{terms}\:{of}\:{arithmetic} \\ $$$${peogression}\:{are}\:{equal}\:{and}\:{the}\:{seventh} \\ $$$${and}\:{fourtenth}\:{terms}\:{of}\:{another}\:{arithmetic}\:{are} \\ $$$${equal}\:{then}\:{show}\:{that}\:{the}\:{first}\:{term}\:{from} \\ $$$${the}\:{first}\:{arithmetic}\:{is}\:{equal}\:{the}\:{tenth} \\ $$$${from}\:{the}\:{second}\:{one} \\ $$$${and}\:{so}\:{sorry}\:{because}\:{my}\:{english}\:{is} \\ $$$${not}\:{so}\:{good} \\ $$

Question Number 82877    Answers: 1   Comments: 1

1)find xy∈R 2)find x,y∈Z (x+2yi)^6 =8i

$$\left.\mathrm{1}\right){find}\:{xy}\in{R} \\ $$$$\left.\mathrm{2}\right){find}\:{x},{y}\in{Z} \\ $$$$\left({x}+\mathrm{2}{yi}\right)^{\mathrm{6}} =\mathrm{8}{i} \\ $$

  Pg 1313      Pg 1314      Pg 1315      Pg 1316      Pg 1317      Pg 1318      Pg 1319      Pg 1320      Pg 1321      Pg 1322   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com