Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1318

Question Number 71073    Answers: 3   Comments: 4

Question Number 71054    Answers: 0   Comments: 2

Question Number 71053    Answers: 1   Comments: 1

Question Number 71052    Answers: 0   Comments: 2

Question Number 71051    Answers: 0   Comments: 2

Question Number 71050    Answers: 1   Comments: 1

Question Number 71049    Answers: 0   Comments: 2

Question Number 71047    Answers: 0   Comments: 1

Question Number 71046    Answers: 0   Comments: 1

Question Number 71045    Answers: 0   Comments: 1

Question Number 71034    Answers: 0   Comments: 6

Question Number 71016    Answers: 2   Comments: 0

ln (e+ln (e+ln (e+...)))=?

$$\boldsymbol{\mathrm{ln}}\:\left(\boldsymbol{{e}}+\boldsymbol{\mathrm{ln}}\:\left(\boldsymbol{{e}}+\boldsymbol{\mathrm{ln}}\:\left(\boldsymbol{{e}}+...\right)\right)\right)=? \\ $$

Question Number 71014    Answers: 0   Comments: 0

calculate ∫_0 ^∞ e^(−(x^2 +(1/x^2 ))) dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)} {dx} \\ $$

Question Number 71000    Answers: 0   Comments: 1

Where f(x)=((4x^2 −1)/(2x−1)) defined in R−{(1/2)}, determine lim_(x→(1/2)) f(x).

$${Where}\:{f}\left({x}\right)=\frac{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{x}−\mathrm{1}}\:{defined}\:{in}\: \\ $$$$\mathbb{R}−\left\{\frac{\mathrm{1}}{\mathrm{2}}\right\},\:{determine}\:\underset{{x}\rightarrow\frac{\mathrm{1}}{\mathrm{2}}} {\mathrm{lim}}{f}\left({x}\right). \\ $$

Question Number 70997    Answers: 1   Comments: 0

Question Number 70996    Answers: 0   Comments: 2

Question Number 70980    Answers: 0   Comments: 0

Soit (E,A,μ) un espace mesure . On suppose qu′il existe un X∈A tel μ(X)=+∞ 1)Montrer que si μ est semi-finie alors ∀ r>0 il existe B⊆X tel que r<μ(B)< +∞

$$\:{Soit}\:\left({E},\mathcal{A},\mu\right)\:{un}\:\:{espace}\:{mesure}\:\:.\:{On}\:{suppose} \\ $$$${qu}'{il}\:{existe}\:{un}\:{X}\in\mathcal{A}\:\:{tel}\:\:\mu\left({X}\right)=+\infty \\ $$$$\left.\mathrm{1}\right){Montrer}\:{que}\:{si}\:\:\mu\:{est}\:{semi}-{finie}\:\:{alors} \\ $$$$\forall\:{r}>\mathrm{0}\:\:{il}\:{existe}\:\:{B}\subseteq{X}\:{tel}\:{que}\:\:{r}<\mu\left({B}\right)<\:+\infty \\ $$$$ \\ $$

Question Number 70974    Answers: 0   Comments: 1

Password reset changes In case you forget any password set you can simple reset by going to set/update password. Leave old password field blank. This will work only if you are trying to reset when already logged in.

$$\boldsymbol{\mathrm{Password}}\:\boldsymbol{\mathrm{reset}}\:\boldsymbol{\mathrm{changes}} \\ $$$$\mathrm{In}\:\mathrm{case}\:\mathrm{you}\:\mathrm{forget}\:\mathrm{any}\:\mathrm{password}\:\mathrm{set} \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{simple}\:\mathrm{reset}\:\mathrm{by}\:\mathrm{going}\:\mathrm{to} \\ $$$$\mathrm{set}/\mathrm{update}\:\mathrm{password}. \\ $$$$ \\ $$$$\mathrm{Leave}\:\mathrm{old}\:\mathrm{password}\:\mathrm{field}\:\mathrm{blank}. \\ $$$$ \\ $$$$\mathrm{This}\:\mathrm{will}\:\mathrm{work}\:\mathrm{only}\:\mathrm{if}\:\mathrm{you}\:\mathrm{are}\:\mathrm{trying} \\ $$$$\mathrm{to}\:\mathrm{reset}\:\mathrm{when}\:\mathrm{already}\:\mathrm{logged}\:\mathrm{in}. \\ $$

Question Number 70969    Answers: 1   Comments: 0

Question Number 70949    Answers: 1   Comments: 3

Question Number 70920    Answers: 1   Comments: 2

i ! = ?

$$\mathrm{i}\:!\:\:=\:\:? \\ $$

Question Number 70915    Answers: 1   Comments: 1

Question Number 70914    Answers: 2   Comments: 3

1+(z+2i)+(z+2i)^2 +(z+2i)^3 +(z+2i)^4 =0 find z , z∈C

$$\mathrm{1}+\left(\mathrm{z}+\mathrm{2i}\right)+\left(\mathrm{z}+\mathrm{2i}\right)^{\mathrm{2}} +\left(\mathrm{z}+\mathrm{2i}\right)^{\mathrm{3}} +\left(\mathrm{z}+\mathrm{2i}\right)^{\mathrm{4}} =\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{z}\:,\:\mathrm{z}\in\mathrm{C} \\ $$

Question Number 70917    Answers: 1   Comments: 3

∫(√(tan^2 x+3)) dx

$$\int\sqrt{{tan}^{\mathrm{2}} {x}+\mathrm{3}}\:{dx} \\ $$

Question Number 70909    Answers: 1   Comments: 2

Question Number 70913    Answers: 1   Comments: 4

  Pg 1313      Pg 1314      Pg 1315      Pg 1316      Pg 1317      Pg 1318      Pg 1319      Pg 1320      Pg 1321      Pg 1322   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com