Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1318
Question Number 80733 Answers: 0 Comments: 3
$$\mathrm{x}^{\mathrm{2}} =\mathrm{2}^{\mathrm{x}} \Rightarrow\mathrm{x}=? \\ $$
Question Number 80731 Answers: 1 Comments: 1
Question Number 80718 Answers: 0 Comments: 2
$$\mathrm{Evaluate}:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\mathrm{x}}{\mid\mathrm{x}\mid} \\ $$
Question Number 80708 Answers: 1 Comments: 3
$${find}\:{sum}\:{of}\:{the}\:{series} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)} \\ $$
Question Number 80706 Answers: 1 Comments: 0
Question Number 80702 Answers: 1 Comments: 4
$$\begin{cases}{\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}=\mathrm{34}}\\{\frac{\mathrm{1}}{\sqrt{{x}}}+\frac{\mathrm{1}}{\sqrt{{y}}}=\mathrm{23}−\frac{\mathrm{1}}{\sqrt{{xy}}}\:}\end{cases} \\ $$$${find}\:{the}\:{solution}. \\ $$
Question Number 80690 Answers: 0 Comments: 2
Question Number 80689 Answers: 0 Comments: 1
Question Number 80688 Answers: 0 Comments: 1
Question Number 80687 Answers: 0 Comments: 2
Question Number 80682 Answers: 0 Comments: 3
Question Number 80675 Answers: 2 Comments: 1
Question Number 80670 Answers: 1 Comments: 2
$$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{{e}^{\mathrm{sin}\:{x}} −\mathrm{1}}{{x}−\pi}=? \\ $$
Question Number 80653 Answers: 0 Comments: 5
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{sin}\:{x}}{{x}}\right)^{\frac{\mathrm{3}}{{x}^{\mathrm{2}} }} \\ $$
Question Number 80650 Answers: 2 Comments: 2
$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{\left(\mid{x}\mid−{a}\right)^{\mathrm{3}} −\left(\mid{a}\mid−{a}\right)^{\mathrm{3}} }{{x}−{a}}\:=\:{P}\:,\:{a}\:<\mathrm{0} \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\frac{\left(\mid{x}\mid−{a}\right)^{\mathrm{2}} −\left(\mid{a}\mid−{a}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} −{ax}}=? \\ $$
Question Number 80648 Answers: 0 Comments: 9
Question Number 80645 Answers: 0 Comments: 11
$${if} \\ $$$${a}_{\mathrm{1}} =\mathrm{2} \\ $$$${a}_{{n}+\mathrm{1}} ={a}_{{n}} ^{\mathrm{2}} −\mathrm{1} \\ $$$${find}\:{a}_{{n}} =? \\ $$
Question Number 80643 Answers: 2 Comments: 0
$${Prove}\:{that}\:{there}\:{is}\:{no}\:{solution}\:{for} \\ $$$$\mathrm{7}^{{n}} \equiv\mathrm{1}\:{mod}\left(\mathrm{35}\right)\:{with}\:{n}\in\mathbb{N}. \\ $$
Question Number 80642 Answers: 0 Comments: 0
$$ \\ $$
Question Number 80639 Answers: 0 Comments: 2
$$\frac{\mathrm{log}_{\mathrm{2}} ^{\mathrm{2}} \:\left({x}−\mathrm{4}\right)−\mathrm{log}_{\mathrm{2}} \left(\mathrm{4}−{x}\right)^{\mathrm{8}} +\mathrm{16}}{\mathrm{30}−\mathrm{3}{x}−\left(\mathrm{4}−{x}\right)^{\mathrm{2}} }\:\geqslant\:\mathrm{0} \\ $$
Question Number 80620 Answers: 0 Comments: 1
Question Number 80614 Answers: 0 Comments: 1
Question Number 80613 Answers: 1 Comments: 2
$${Q}.{find}\:\:\:\frac{{d}}{{dx}}\left({x}!\right) \\ $$
Question Number 80612 Answers: 0 Comments: 3
$$\:\Psi\left({x}\right)=\int_{\mathrm{1}} ^{{x}} \frac{\mathrm{1}}{\sqrt{\mathrm{1}−{e}^{{t}} }}\:{dt}\:\:\:\:\:\forall{x}\in\mathbb{R} \\ $$$${prove}\:{that} \\ $$$$\Psi\left({x}\right)=\mathrm{2}{ln}\left(\frac{\mathrm{1}−\sqrt{\mathrm{1}−{e}^{{x}} }}{\mathrm{1}−\sqrt{\mathrm{1}−{e}}}\right)−{x}+\mathrm{1} \\ $$
Question Number 80607 Answers: 0 Comments: 0
Question Number 80595 Answers: 1 Comments: 2
Pg 1313 Pg 1314 Pg 1315 Pg 1316 Pg 1317 Pg 1318 Pg 1319 Pg 1320 Pg 1321 Pg 1322
Terms of Service
Privacy Policy
Contact: info@tinkutara.com