Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1317

Question Number 74168    Answers: 3   Comments: 1

Question Number 74155    Answers: 0   Comments: 0

Question Number 74148    Answers: 1   Comments: 0

{ ((−x(√3)+2my(√2)=((√3)/3))),((2mx−3y(√6)=1)) :} help me solve it.

$$\begin{cases}{−{x}\sqrt{\mathrm{3}}+\mathrm{2}{my}\sqrt{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}}\\{\mathrm{2}{mx}−\mathrm{3}{y}\sqrt{\mathrm{6}}=\mathrm{1}}\end{cases}\:\:\:\:\:\: \\ $$$$ \\ $$$${help}\:{me}\:{solve}\:{it}. \\ $$

Question Number 74144    Answers: 0   Comments: 0

Question Number 74143    Answers: 0   Comments: 0

Question Number 74142    Answers: 1   Comments: 0

Question Number 74141    Answers: 0   Comments: 1

Question Number 74140    Answers: 1   Comments: 0

Question Number 74139    Answers: 0   Comments: 1

Question Number 74138    Answers: 0   Comments: 2

Question Number 74137    Answers: 0   Comments: 2

Question Number 74131    Answers: 0   Comments: 2

Can anyone share the solutions (pdf) of the book Advanced engineering Mathematics by Erwin kreyzig 8th edition ?

$${Can}\:{anyone}\:{share}\:{the}\:{solutions}\:\left({pdf}\right) \\ $$$${of}\:{the}\:{book}\:{Advanced}\:{engineering} \\ $$$${Mathematics}\:{by}\:{Erwin}\:{kreyzig}\:\mathrm{8}{th} \\ $$$${edition}\:? \\ $$$$ \\ $$

Question Number 74130    Answers: 1   Comments: 0

hello] help me to solve it in ]−Π;Π]×]−Π;Π] please { ((x−y=(Π/6))),((cosx−(√3)cosy=−(1/2))) :}

$$\left.\mathrm{h}\left.\mathrm{e}\left.\mathrm{l}\left.\mathrm{l}\left.\mathrm{o}\right]\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{it}\:\mathrm{in}\:\right]−\Pi;\Pi\right]×\right]−\Pi;\Pi\right]\:\mathrm{please} \\ $$$$\begin{cases}{\mathrm{x}−\mathrm{y}=\frac{\Pi}{\mathrm{6}}}\\{\mathrm{cosx}−\sqrt{\mathrm{3}}\mathrm{cosy}=−\frac{\mathrm{1}}{\mathrm{2}}}\end{cases} \\ $$

Question Number 74129    Answers: 1   Comments: 0

2C_4 ^n = 35C_3 ^(n/2) ⇒ n = ?

$$\mathrm{2}\boldsymbol{{C}}_{\mathrm{4}} ^{\boldsymbol{{n}}} \:=\:\mathrm{35}\boldsymbol{{C}}_{\mathrm{3}} ^{\frac{\boldsymbol{{n}}}{\mathrm{2}}} \: \\ $$$$\Rightarrow\:\boldsymbol{{n}}\:=\:? \\ $$

Question Number 74123    Answers: 1   Comments: 2

Question Number 74121    Answers: 0   Comments: 1

Factor the polynomial ((c/2))x^2 +(b−((3c)/2))x+(c−b+a)

$$\mathrm{Factor}\:\mathrm{the}\:\mathrm{polynomial} \\ $$$$\left(\frac{{c}}{\mathrm{2}}\right){x}^{\mathrm{2}} +\left({b}−\frac{\mathrm{3}{c}}{\mathrm{2}}\right){x}+\left({c}−{b}+{a}\right) \\ $$

Question Number 74117    Answers: 0   Comments: 1

Find the volume of the solid that lies within the sphere x^2 +y^2 +z^2 =16, above the x-y plane and below the cone z=(√(x^2 +y^2 ))

$${Find}\:{the}\:{volume}\:{of}\:{the}\:{solid}\:{that}\:{lies} \\ $$$${within}\:{the}\:{sphere}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{16},\:{above} \\ $$$${the}\:{x}-{y}\:{plane}\:{and}\:{below}\:{the}\:{cone} \\ $$$${z}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$

Question Number 74112    Answers: 1   Comments: 0

Question Number 74111    Answers: 1   Comments: 1

Question Number 74109    Answers: 1   Comments: 3

Question Number 74087    Answers: 0   Comments: 15

(Q73828) prove that no cube exists whose corners are located on all faces of an other cube.

$$\left({Q}\mathrm{73828}\right) \\ $$$${prove}\:{that}\:{no}\:{cube}\:{exists}\:{whose}\:{corners} \\ $$$${are}\:{located}\:{on}\:{all}\:{faces}\:{of}\:{an}\:{other}\:{cube}. \\ $$

Question Number 74075    Answers: 0   Comments: 1

Question Number 74068    Answers: 1   Comments: 4

Question Number 74063    Answers: 0   Comments: 0

Question Number 74041    Answers: 0   Comments: 3

Question Number 74040    Answers: 1   Comments: 1

Find orthogonal trajectories of the curves: (x−c)^2 +y^2 =c^2 .

$${Find}\:{orthogonal}\:{trajectories}\:{of}\:{the} \\ $$$${curves}:\:\left({x}−{c}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={c}^{\mathrm{2}} . \\ $$

  Pg 1312      Pg 1313      Pg 1314      Pg 1315      Pg 1316      Pg 1317      Pg 1318      Pg 1319      Pg 1320      Pg 1321   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com