Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1317
Question Number 74168 Answers: 3 Comments: 1
Question Number 74155 Answers: 0 Comments: 0
Question Number 74148 Answers: 1 Comments: 0
$$\begin{cases}{−{x}\sqrt{\mathrm{3}}+\mathrm{2}{my}\sqrt{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}}\\{\mathrm{2}{mx}−\mathrm{3}{y}\sqrt{\mathrm{6}}=\mathrm{1}}\end{cases}\:\:\:\:\:\: \\ $$$$ \\ $$$${help}\:{me}\:{solve}\:{it}. \\ $$
Question Number 74144 Answers: 0 Comments: 0
Question Number 74143 Answers: 0 Comments: 0
Question Number 74142 Answers: 1 Comments: 0
Question Number 74141 Answers: 0 Comments: 1
Question Number 74140 Answers: 1 Comments: 0
Question Number 74139 Answers: 0 Comments: 1
Question Number 74138 Answers: 0 Comments: 2
Question Number 74137 Answers: 0 Comments: 2
Question Number 74131 Answers: 0 Comments: 2
$${Can}\:{anyone}\:{share}\:{the}\:{solutions}\:\left({pdf}\right) \\ $$$${of}\:{the}\:{book}\:{Advanced}\:{engineering} \\ $$$${Mathematics}\:{by}\:{Erwin}\:{kreyzig}\:\mathrm{8}{th} \\ $$$${edition}\:? \\ $$$$ \\ $$
Question Number 74130 Answers: 1 Comments: 0
$$\left.\mathrm{h}\left.\mathrm{e}\left.\mathrm{l}\left.\mathrm{l}\left.\mathrm{o}\right]\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{it}\:\mathrm{in}\:\right]−\Pi;\Pi\right]×\right]−\Pi;\Pi\right]\:\mathrm{please} \\ $$$$\begin{cases}{\mathrm{x}−\mathrm{y}=\frac{\Pi}{\mathrm{6}}}\\{\mathrm{cosx}−\sqrt{\mathrm{3}}\mathrm{cosy}=−\frac{\mathrm{1}}{\mathrm{2}}}\end{cases} \\ $$
Question Number 74129 Answers: 1 Comments: 0
$$\mathrm{2}\boldsymbol{{C}}_{\mathrm{4}} ^{\boldsymbol{{n}}} \:=\:\mathrm{35}\boldsymbol{{C}}_{\mathrm{3}} ^{\frac{\boldsymbol{{n}}}{\mathrm{2}}} \: \\ $$$$\Rightarrow\:\boldsymbol{{n}}\:=\:? \\ $$
Question Number 74123 Answers: 1 Comments: 2
Question Number 74121 Answers: 0 Comments: 1
$$\mathrm{Factor}\:\mathrm{the}\:\mathrm{polynomial} \\ $$$$\left(\frac{{c}}{\mathrm{2}}\right){x}^{\mathrm{2}} +\left({b}−\frac{\mathrm{3}{c}}{\mathrm{2}}\right){x}+\left({c}−{b}+{a}\right) \\ $$
Question Number 74117 Answers: 0 Comments: 1
$${Find}\:{the}\:{volume}\:{of}\:{the}\:{solid}\:{that}\:{lies} \\ $$$${within}\:{the}\:{sphere}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{16},\:{above} \\ $$$${the}\:{x}-{y}\:{plane}\:{and}\:{below}\:{the}\:{cone} \\ $$$${z}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$
Question Number 74112 Answers: 1 Comments: 0
Question Number 74111 Answers: 1 Comments: 1
Question Number 74109 Answers: 1 Comments: 3
Question Number 74087 Answers: 0 Comments: 15
$$\left({Q}\mathrm{73828}\right) \\ $$$${prove}\:{that}\:{no}\:{cube}\:{exists}\:{whose}\:{corners} \\ $$$${are}\:{located}\:{on}\:{all}\:{faces}\:{of}\:{an}\:{other}\:{cube}. \\ $$
Question Number 74075 Answers: 0 Comments: 1
Question Number 74068 Answers: 1 Comments: 4
Question Number 74063 Answers: 0 Comments: 0
Question Number 74041 Answers: 0 Comments: 3
Question Number 74040 Answers: 1 Comments: 1
$${Find}\:{orthogonal}\:{trajectories}\:{of}\:{the} \\ $$$${curves}:\:\left({x}−{c}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={c}^{\mathrm{2}} . \\ $$
Pg 1312 Pg 1313 Pg 1314 Pg 1315 Pg 1316 Pg 1317 Pg 1318 Pg 1319 Pg 1320 Pg 1321
Terms of Service
Privacy Policy
Contact: info@tinkutara.com