Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1315

Question Number 82883    Answers: 1   Comments: 0

[(e^(−2(√x)) /(√x))−(y/(√x)) ] .(dx/dy) = 1 , x ≠ 0

$$\left[\frac{\mathrm{e}^{−\mathrm{2}\sqrt{\mathrm{x}}} }{\sqrt{\mathrm{x}}}−\frac{\mathrm{y}}{\sqrt{\mathrm{x}}}\:\right]\:.\frac{\mathrm{dx}}{\mathrm{dy}}\:=\:\mathrm{1}\:,\:\mathrm{x}\:\neq\:\mathrm{0} \\ $$

Question Number 82881    Answers: 1   Comments: 2

(√(√(...(√(6561))))) = 3^8^x (60 times) find x

$$ \\ $$$$\sqrt{\sqrt{...\sqrt{\mathrm{6561}}}}\:=\:\mathrm{3}^{\mathrm{8}^{\mathrm{x}} } \:\left(\mathrm{60}\:\mathrm{times}\right) \\ $$$$\mathrm{find}\:\mathrm{x} \\ $$

Question Number 82879    Answers: 0   Comments: 1

prove that ((cos^2 a+sin^2 b)/(sin acos a + sin bcos b)) = cot (a+b)

$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$\frac{\mathrm{cos}\:^{\mathrm{2}} \mathrm{a}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{b}}{\mathrm{sin}\:\mathrm{acos}\:\mathrm{a}\:+\:\mathrm{sin}\:\mathrm{bcos}\:\mathrm{b}}\:=\:\mathrm{cot}\:\left(\mathrm{a}+\mathrm{b}\right) \\ $$

Question Number 82878    Answers: 1   Comments: 3

Question Number 82920    Answers: 1   Comments: 0

calculate lim_(x→0) ((ln(1+ln(1+x)))/x)

$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{{ln}\left(\mathrm{1}+{ln}\left(\mathrm{1}+{x}\right)\right)}{{x}} \\ $$

Question Number 82919    Answers: 1   Comments: 2

bangun datar

$${bangun}\:{datar} \\ $$

Question Number 82872    Answers: 0   Comments: 1

1)find ∫∫_W ((xdx)/(a^2 +x^2 +y^2 )) with W_a →x^2 +y^2 ≤a^2 and x>0 (a>0) 2)calculate ∫∫_W_1 ((xdx)/(x^2 +y^2 +1))

$$\left.\mathrm{1}\right){find}\:\int\int_{{W}} \:\frac{{xdx}}{{a}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }\:{with} \\ $$$${W}_{{a}} \rightarrow{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:\leqslant{a}^{\mathrm{2}} \:{and}\:{x}>\mathrm{0}\:\:\:\:\:\left({a}>\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:\int\int_{{W}_{\mathrm{1}} } \:\:\:\frac{{xdx}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:+\mathrm{1}} \\ $$

Question Number 82871    Answers: 0   Comments: 1

find ∫∫_([0,1]^2 ) ∣x^2 −y^2 ∣dxdy

$${find}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\mid{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \mid{dxdy} \\ $$

Question Number 82873    Answers: 1   Comments: 2

Question Number 82867    Answers: 0   Comments: 3

hello prove that ∫_0 ^(+∞) sin(x^4 )dx=sin((π/8))∫_0 ^(+∞) e^(−x^4 ) dx? verry nice day Good Bless You

$${hello}\:{prove}\:{that}\:\int_{\mathrm{0}} ^{+\infty} {sin}\left({x}^{\mathrm{4}} \right){dx}={sin}\left(\frac{\pi}{\mathrm{8}}\right)\int_{\mathrm{0}} ^{+\infty} {e}^{−{x}^{\mathrm{4}} } {dx}? \\ $$$${verry}\:{nice}\:{day}\:{Good}\:{Bless}\:{You} \\ $$

Question Number 82843    Answers: 1   Comments: 0

show that (((1+(√3) i)^4 (1+i)^8 )/((cos100°−i sin100)^3 ))=−256

$${show}\:{that} \\ $$$$\frac{\left(\mathrm{1}+\sqrt{\mathrm{3}}\:{i}\right)^{\mathrm{4}} \left(\mathrm{1}+{i}\right)^{\mathrm{8}} }{\left({cos}\mathrm{100}°−{i}\:{sin}\mathrm{100}\right)^{\mathrm{3}} }=−\mathrm{256} \\ $$

Question Number 82839    Answers: 0   Comments: 8

if the first and fifth terms of arithmetic peogression are equal and the seventh and fourtenth terms of another arithmetic are equal then show that the first term from the first arithmetic is equal the tenth from the second one and so sorry because my english is not so good

$${if}\:{the}\:{first}\:{and}\:{fifth}\:{terms}\:{of}\:{arithmetic} \\ $$$${peogression}\:{are}\:{equal}\:{and}\:{the}\:{seventh} \\ $$$${and}\:{fourtenth}\:{terms}\:{of}\:{another}\:{arithmetic}\:{are} \\ $$$${equal}\:{then}\:{show}\:{that}\:{the}\:{first}\:{term}\:{from} \\ $$$${the}\:{first}\:{arithmetic}\:{is}\:{equal}\:{the}\:{tenth} \\ $$$${from}\:{the}\:{second}\:{one} \\ $$$${and}\:{so}\:{sorry}\:{because}\:{my}\:{english}\:{is} \\ $$$${not}\:{so}\:{good} \\ $$

Question Number 82877    Answers: 1   Comments: 1

1)find xy∈R 2)find x,y∈Z (x+2yi)^6 =8i

$$\left.\mathrm{1}\right){find}\:{xy}\in{R} \\ $$$$\left.\mathrm{2}\right){find}\:{x},{y}\in{Z} \\ $$$$\left({x}+\mathrm{2}{yi}\right)^{\mathrm{6}} =\mathrm{8}{i} \\ $$

Question Number 82821    Answers: 0   Comments: 1

Log_y x+Log_x y =64 find x and y

$${Log}_{{y}} \:{x}+{Log}_{{x}} \:{y}\:=\mathrm{64} \\ $$$${find}\:{x}\:{and}\:{y} \\ $$

Question Number 82806    Answers: 1   Comments: 1

Question Number 82800    Answers: 4   Comments: 2

lim_(x→0) ((1−(√(1+x^2 )) cos 2x)/x^2 )

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\mathrm{cos}\:\mathrm{2}{x}}{{x}^{\mathrm{2}} } \\ $$

Question Number 82794    Answers: 0   Comments: 0

(d^2 y/dx^2 ) + 5x ((dy/dx))^2 −6y=ln x

$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\mathrm{5}{x}\:\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} −\mathrm{6}{y}={ln}\:{x} \\ $$

Question Number 82792    Answers: 1   Comments: 1

show that if A⊂R^m and B⊂R^n are compact sets. then A×B={(a,b)∈R^(m+n) :a∈A and b∈B}

$${show}\:{that}\:{if}\:{A}\subset\mathbb{R}^{{m}} \:{and}\:{B}\subset\mathbb{R}^{{n}} \:{are}\: \\ $$$${compact}\:{sets}.\: \\ $$$${then}\:{A}×{B}=\left\{\left({a},{b}\right)\in\mathbb{R}^{{m}+{n}} :{a}\in{A}\:{and}\:{b}\in{B}\right\} \\ $$

Question Number 82782    Answers: 1   Comments: 1

(1). 9(9÷3)−6(8÷3)×2 (2). 2(5/3)+3(2/4)

$$\:\: \\ $$$$\:\:\:\left(\mathrm{1}\right).\:\mathrm{9}\left(\mathrm{9}\boldsymbol{\div}\mathrm{3}\right)−\mathrm{6}\left(\mathrm{8}\boldsymbol{\div}\mathrm{3}\right)×\mathrm{2} \\ $$$$\:\:\:\:\left(\mathrm{2}\right).\:\mathrm{2}\frac{\mathrm{5}}{\mathrm{3}}+\mathrm{3}\frac{\mathrm{2}}{\mathrm{4}} \\ $$

Question Number 82816    Answers: 0   Comments: 3

calculate the exact value ∫_0 ^∞ ((cos(x))/(x^2 +1)) dx

$${calculate}\:{the}\:{exact}\:{value}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{cos}\left({x}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}\:{dx} \\ $$

Question Number 82815    Answers: 0   Comments: 2

lim_(x→0^+ ) (1/((1+(1/x))^(1/(ln(x))) ))=?

$$\underset{{x}\rightarrow\mathrm{0}^{+} } {{lim}}\:\frac{\mathrm{1}}{\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{\frac{\mathrm{1}}{{ln}\left({x}\right)}} }=? \\ $$

Question Number 82759    Answers: 1   Comments: 0

find the value of (√(2+(√(2+(√(2+(√(2cos 80^o )))))))) =

$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2cos}\:\mathrm{80}^{{o}} }}}}\:=\: \\ $$

Question Number 82755    Answers: 1   Comments: 2

calculate ∫_0 ^∞ ((lnx)/((1+x^2 )^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$

Question Number 82753    Answers: 0   Comments: 3

Question Number 82761    Answers: 0   Comments: 7

lim_(x→0) (((cosx)^(1/m) −(cosx)^(1/n) )/x^2 ) [where m and n integer]

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left({cosx}\right)^{\frac{\mathrm{1}}{{m}}} −\left({cosx}\right)^{\frac{\mathrm{1}}{{n}}} }{{x}^{\mathrm{2}} }\:\:\left[{where}\:{m}\:{and}\:{n}\:{integer}\right] \\ $$

Question Number 82768    Answers: 0   Comments: 1

  Pg 1310      Pg 1311      Pg 1312      Pg 1313      Pg 1314      Pg 1315      Pg 1316      Pg 1317      Pg 1318      Pg 1319   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com