Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1315
Question Number 81911 Answers: 1 Comments: 4
Question Number 81910 Answers: 0 Comments: 1
$${a}_{\mathrm{1}} =\mathrm{1} \\ $$$${a}_{\mathrm{2}} =\mathrm{2} \\ $$$${a}_{{n}+\mathrm{1}} =\left({n}+\mathrm{1}\right){a}_{{n}} −\mathrm{2}{a}_{{n}−\mathrm{1}} \\ $$$${find}\:{a}_{{n}} =? \\ $$
Question Number 81906 Answers: 0 Comments: 1
Question Number 81889 Answers: 1 Comments: 0
Question Number 81888 Answers: 1 Comments: 1
Question Number 81887 Answers: 0 Comments: 2
Question Number 81884 Answers: 0 Comments: 1
Question Number 81879 Answers: 0 Comments: 2
$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{determinant}\begin{vmatrix}{−\mathrm{1}}&{\:\:\:\:\mathrm{1}}&{\:\:\:\:\mathrm{1}}\\{\:\:\:\:\mathrm{1}}&{−\mathrm{1}}&{\:\:\:\:\mathrm{1}}\\{\:\:\:\:\mathrm{1}}&{\:\:\:\:\:\mathrm{1}}&{−\mathrm{1}}\end{vmatrix} \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$
Question Number 81876 Answers: 0 Comments: 1
$$\mathrm{The}\:\mathrm{system}\:\mathrm{of}\:\mathrm{linear}\:\mathrm{equations}\:{x}+{y}+{z}=\mathrm{2}, \\ $$$$\mathrm{2}{x}+{y}−{z}=\mathrm{3},\:\mathrm{3}{x}+\mathrm{2}{y}+{kz}=\mathrm{4}\:\mathrm{has}\:\mathrm{a}\:\mathrm{unique} \\ $$$$\mathrm{solution}\:\mathrm{if} \\ $$
Question Number 81892 Answers: 5 Comments: 0
Question Number 81874 Answers: 0 Comments: 2
$$\mathrm{If}\:{A}=\begin{bmatrix}{\:\:\mathrm{1}}&{−\mathrm{5}}&{\:\:\:\mathrm{7}}\\{\:\:\mathrm{0}}&{\:\:\:\:\mathrm{7}}&{\:\:\:\mathrm{9}}\\{\mathrm{11}}&{\:\:\:\:\mathrm{8}}&{\:\:\:\mathrm{9}}\end{bmatrix}\:\mathrm{then}\:\mathrm{trace}\:\mathrm{of}\: \\ $$$$\mathrm{matrix}\:{A}\:\mathrm{is} \\ $$
Question Number 81873 Answers: 1 Comments: 1
$$\begin{vmatrix}{\mathrm{sin}^{\mathrm{2}} {x}}&{\mathrm{cos}^{\mathrm{2}} {x}}&{\mathrm{1}}\\{\mathrm{cos}^{\mathrm{2}} {x}}&{\mathrm{sin}^{\mathrm{2}} {x}}&{\mathrm{1}}\\{−\mathrm{10}}&{\:\:\mathrm{12}}&{\mathrm{2}}\end{vmatrix}= \\ $$
Question Number 81872 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{every}\:\mathrm{element}\:\mathrm{of}\:\mathrm{a}\:\mathrm{third}\:\mathrm{order} \\ $$$$\mathrm{determinant}\:\mathrm{of}\:\mathrm{value}\:\bigtriangleup\:\mathrm{is}\:\mathrm{multiplied}\:\mathrm{by} \\ $$$$\mathrm{5},\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{new}\:\mathrm{determinant}\:\mathrm{is} \\ $$
Question Number 81871 Answers: 1 Comments: 3
$${a}_{\mathrm{1}} =\mathrm{4} \\ $$$${a}_{{n}+\mathrm{1}} =\frac{\mathrm{4}{a}_{{n}} +\mathrm{3}}{{a}_{{n}} +\mathrm{2}} \\ $$$${find}\:{a}_{{n}} =? \\ $$
Question Number 81854 Answers: 1 Comments: 1
Question Number 81853 Answers: 1 Comments: 2
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left\{{n}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{x}^{{n}} }{{x}^{\mathrm{3}} +\mathrm{1}}\:{dx}\:\right\}\:=\:? \\ $$
Question Number 81843 Answers: 2 Comments: 5
Question Number 81851 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right){find}\:\int\:\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 81836 Answers: 0 Comments: 0
Question Number 81835 Answers: 0 Comments: 1
Question Number 81829 Answers: 1 Comments: 2
Question Number 81828 Answers: 0 Comments: 0
Question Number 81824 Answers: 1 Comments: 0
Question Number 81821 Answers: 1 Comments: 0
Question Number 81804 Answers: 2 Comments: 1
Question Number 81801 Answers: 1 Comments: 1
Pg 1310 Pg 1311 Pg 1312 Pg 1313 Pg 1314 Pg 1315 Pg 1316 Pg 1317 Pg 1318 Pg 1319
Terms of Service
Privacy Policy
Contact: info@tinkutara.com