Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1315
Question Number 82082 Answers: 0 Comments: 4
$$\mathrm{Evaluate}:\:\:\:\:\:\:\left(\frac{\sqrt{\mathrm{30}\:+\:\sqrt{\mathrm{8}}\:+\:\sqrt{\mathrm{5}}}}{\sqrt{\mathrm{8}}\:+\:\sqrt{\mathrm{5}}}\right)^{\mathrm{1}/\mathrm{4}} \\ $$
Question Number 82073 Answers: 1 Comments: 3
$$\mathrm{Show}\:\mathrm{that}:\:\:\:\:\mathrm{j}_{\mathrm{3}/\mathrm{2}} \left(\mathrm{x}\right)\:\:=\:\:\frac{\sqrt{\mathrm{2}}}{\pi\mathrm{x}}\:\left(\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}}\:−\:\mathrm{cos}\:\mathrm{x}\right) \\ $$
Question Number 82071 Answers: 2 Comments: 0
$${x}\neq\:{y}\:\neq{z}\:\neq\:\mathrm{0} \\ $$$${xy}\:+\:{xz}\:+\:{yz}\:=\:\mathrm{0} \\ $$$${prove}\:{that}\:\frac{{x}+{y}}{{z}}+\frac{{x}+{z}}{{y}}+\frac{{y}+{z}}{{x}}\:=\:−\mathrm{3} \\ $$$$ \\ $$
Question Number 82067 Answers: 1 Comments: 5
$$\begin{cases}{\mid{x}\mid\:−\sqrt[{\mathrm{3}\:}]{{y}+\mathrm{3}\:}\:=\:\mathrm{1}}\\{\left(−{x}\sqrt{−{x}}\right)^{\mathrm{2}} \:=\:{y}\:+\mathrm{10}}\end{cases} \\ $$$${find}\:{solution} \\ $$
Question Number 82066 Answers: 0 Comments: 1
$$\mathrm{log}_{\mathrm{3}+\mathrm{2}{x}−{x}^{\mathrm{2}} } \:\left(\frac{\mathrm{sin}\:{x}+\sqrt{\mathrm{3}}\mathrm{cos}\:{x}}{\mathrm{sin}\:\mathrm{3}{x}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{2}} \left(\mathrm{3}+\mathrm{2}{x}−{x}^{\mathrm{2}} \right)}\: \\ $$
Question Number 82078 Answers: 1 Comments: 1
$${f}\left(\mathrm{10}^{{x}} \right)\:=\:\sqrt{{x}}\: \\ $$$${what}\:{is}\:{f}^{−\mathrm{1}} \left({x}\right)=? \\ $$
Question Number 82059 Answers: 2 Comments: 0
$${what}\:{is}\:{derivative}\:{of}\:\:{h}\:=\:\sqrt{{ln}\left({x}\right)} \\ $$$${by}\:{first}\:{principle}\:{method}\: \\ $$
Question Number 82057 Answers: 2 Comments: 1
Question Number 82056 Answers: 0 Comments: 0
$${g}\left({M}\right)=\mathrm{2}{M}\overset{\rightarrow} {{B}}.{M}\overset{\rightarrow} {{C}}+{M}\overset{\rightarrow} {{C}}.{M}\overset{\rightarrow} {{A}}+{M}\overset{\rightarrow} {{A}}.{M}\overset{\rightarrow} {{B}} \\ $$$${g}\left({G}\right)=\mathrm{4}{MA}^{\mathrm{2}} +\mathrm{3}{M}\overset{\rightarrow} {{A}}\left({A}\overset{\rightarrow} {{B}}+{A}\overset{\rightarrow} {{C}}\right) \\ $$$$ \\ $$$$\left.\mathrm{1}\right)\:{show}\:{that}\:\forall\:{M}\:\in\:{plan} \\ $$$${g}\left({M}\right)={g}\left({G}\right)+\mathrm{4}{MG}^{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\:{Determine}\:{the}\:{set}\:{of}\:{point}\:{M}\:{of}\:{plan} \\ $$$${such}\:{as}\:{g}\left({M}\right)={g}\left({A}\right) \\ $$$$\left.\mathrm{2}\right)\:{Construct}\:{this}\:{set}\:{of}\:{point}\:{M} \\ $$$${in}\:{the}\:{case}\:{where}\:{g}\left({G}\right)=\mathrm{5}. \\ $$
Question Number 82042 Answers: 0 Comments: 4
Question Number 82041 Answers: 1 Comments: 4
$${show}\:{that} \\ $$$$\pi^{{ie}} +\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$
Question Number 82034 Answers: 0 Comments: 1
$$\boldsymbol{{P}}{rove}\:\:{by}\:\:{maths}\:\:{induction}\:\:{tbat} \\ $$$$\boldsymbol{{n}}^{\mathrm{5}} \:−\:\boldsymbol{{n}}^{\mathrm{3}} \:\:\boldsymbol{{is}}\:\boldsymbol{{divisible}}\:\boldsymbol{{by}}\:\mathrm{24}. \\ $$
Question Number 82026 Answers: 1 Comments: 0
$$\sqrt{{x}}+{y}\:=\:\mathrm{7} \\ $$$${x}+\sqrt{{y}\:}\:=\mathrm{11}\: \\ $$$${find}\:{x}\:{and}\:{y} \\ $$$$ \\ $$
Question Number 82022 Answers: 0 Comments: 0
Question Number 82020 Answers: 0 Comments: 2
Question Number 82019 Answers: 1 Comments: 0
Question Number 82018 Answers: 2 Comments: 2
$$\mathrm{Differentiate}\:\:\:\:\:\mathrm{y}\:\:=\:\:\mathrm{2}^{\mathrm{x}} \:\:\:\:\mathrm{from}\:\mathrm{the}\:\mathrm{first}\:\mathrm{principle}. \\ $$
Question Number 81996 Answers: 0 Comments: 0
$${calculate}\:{I}_{{n}} =\int\int_{\left[\frac{\mathrm{1}}{{n}},{n}\left[\right.\right.} \:\:{e}^{−{x}^{\mathrm{2}} −\mathrm{3}{y}^{\mathrm{2}} } {dxdy} \\ $$$${and}\:{find}\:{lim}_{{n}\rightarrow+\infty} \:\:{I}_{{n}} \\ $$$${conclude}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{2}} } {dx}=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$
Question Number 81994 Answers: 0 Comments: 0
$${calculate}\:\int\int_{{W}} \left({x}+{y}\right){e}^{{x}−{y}} {dxdy} \\ $$$${with}\:{W}\:{is}\:{the}\:{triangle}\:{limited}\:{by} \\ $$$${o},{A}\left(\mathrm{1},\mathrm{0}\right){and}\:{B}\left(\mathrm{0},\mathrm{1}\right) \\ $$
Question Number 81993 Answers: 0 Comments: 0
$${calculate}\:\int\int_{{D}} {ln}\left(\mathrm{1}+{x}+{y}\right){dxdy} \\ $$$${with}\:{D}\:{is}\:{the}\:{triangle}\:{limited}\:{by} \\ $$$${points}\:\mathrm{0},{A}\left(\mathrm{1},\mathrm{0}\right)\:{and}\:{B}\left(\mathrm{0},\mathrm{1}\right) \\ $$
Question Number 81983 Answers: 0 Comments: 4
Question Number 81980 Answers: 1 Comments: 2
Question Number 82031 Answers: 1 Comments: 0
$${find}\:{x},{y} \\ $$$$\begin{cases}{\mathrm{5}\sqrt{\mathrm{2}{x}^{\mathrm{2}} −{y}^{\mathrm{4}} }\:=\mathrm{4}{x}−\mathrm{3}{y}}\\{\mathrm{4}\sqrt{\mathrm{2}{x}^{\mathrm{2}} −{y}^{\mathrm{4}} }\:=\mathrm{3}{x}−\mathrm{2}{y}}\end{cases} \\ $$
Question Number 82030 Answers: 1 Comments: 0
$${a}\:−\:{b}\:+\:{c}\:−\:{d}\:\:=\:\:\mathrm{2} \\ $$$${a}^{\mathrm{2}} \:−\:{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:−\:{d}^{\mathrm{2}} \:\:=\:\:\mathrm{6} \\ $$$${a}^{\mathrm{3}} \:−\:{b}^{\mathrm{3}} \:+\:{c}^{\mathrm{3}} \:−\:{d}^{\mathrm{3}} \:\:=\:\:\mathrm{20} \\ $$$${a}^{\mathrm{4}} \:−\:{b}^{\mathrm{4}} \:+\:{c}^{\mathrm{4}} \:−\:{d}^{\mathrm{4}} \:\:=\:\:\mathrm{66} \\ $$$${a}\:+\:{b}\:+\:{c}\:+\:{d}\:\:=\:\:? \\ $$
Question Number 81975 Answers: 2 Comments: 5
Question Number 81972 Answers: 1 Comments: 1
Pg 1310 Pg 1311 Pg 1312 Pg 1313 Pg 1314 Pg 1315 Pg 1316 Pg 1317 Pg 1318 Pg 1319
Terms of Service
Privacy Policy
Contact: info@tinkutara.com