Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1311
Question Number 83075 Answers: 1 Comments: 1
$$\underset{−\mathrm{1}\:\:} {\overset{\mathrm{3}} {\int}}\:\left(\mathrm{tan}^{−\mathrm{1}} \frac{{x}}{{x}^{\mathrm{2}} +\mathrm{1}}\:+\:\mathrm{tan}^{−\mathrm{1}} \:\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}}\right){dx}\:= \\ $$
Question Number 83074 Answers: 0 Comments: 2
$${find}\:{all}\:{function}\:\:{satisfying}\:\:\forall\:{x}\in\mathbb{R}\backslash\left\{{k}\pi\:,\:\:{k}\in\mathbb{Z}\right\} \\ $$$${f}\left({x}\right)+\int_{\mathrm{0}} ^{\mathrm{1}} {f}^{\mathrm{2}} \left({x}\right){dx}=\frac{{x}}{{sin}\left(\pi{x}\right)} \\ $$
Question Number 83064 Answers: 2 Comments: 0
$${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{sin}\left({nx}\right)}{{sin}\left({x}\right)}{dx}=\frac{\pi}{\mathrm{2}} \\ $$$${n}\:{is}\:{posative}\:{odd}\:{number} \\ $$
Question Number 83063 Answers: 1 Comments: 3
Question Number 83050 Answers: 0 Comments: 1
Question Number 83049 Answers: 0 Comments: 0
Question Number 83042 Answers: 0 Comments: 1
$${let}\:\:{a},{b}\:{two}\:{positive}\:{reals}\:{such}\:{as}\:\:{a}^{\mathrm{2}} −{b}^{\mathrm{2}} ={ab} \\ $$$${Explicit}\:\:\:{f}\left({a},{b}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{du}}{\sqrt{{a}+{bsin}^{\mathrm{2}} {u}}}\: \\ $$
Question Number 83037 Answers: 0 Comments: 3
$$\mathrm{If}\:\mathrm{m}=\frac{\mathrm{1}−\mathrm{cos}\theta}{\mathrm{sin}\theta}\:,\:\:\mathrm{show}\:\mathrm{that}\:\frac{\mathrm{1}}{\mathrm{m}}=\:\frac{\mathrm{1}+\mathrm{sin}\theta}{\mathrm{sin}\theta} \\ $$
Question Number 83036 Answers: 0 Comments: 3
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{cos}^{\mathrm{4}} \theta−\mathrm{sin}^{\mathrm{4}} \theta=\mathrm{cos}^{\mathrm{2}} \theta−\mathrm{sin}^{\mathrm{2}} \theta \\ $$
Question Number 83035 Answers: 1 Comments: 1
Question Number 83032 Answers: 1 Comments: 0
Question Number 83030 Answers: 1 Comments: 0
Question Number 83028 Answers: 0 Comments: 3
$$\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\mathrm{y}\:\mathrm{sec}\:\mathrm{x}\:=\:\mathrm{tan}\:\mathrm{x} \\ $$
Question Number 83026 Answers: 0 Comments: 0
$${Prove}\:\:{that} \\ $$$$\:\:\:\:\:\mathrm{123456}..\mathrm{201820192020}\:\:{divided}\:\:{by}\:\:\mathrm{13}\:\:,\:\:{the} \\ $$$${remainder}\:\:{is}\:\:\mathrm{5}\:. \\ $$
Question Number 83021 Answers: 0 Comments: 0
$${find}\:{the}\:{sequence}\:{v}_{{n}} \:{wich}\:{verify}\:{v}_{{n}} +{v}_{{n}+\mathrm{1}} =\frac{\left(−\mathrm{1}\right)^{{n}} }{\sqrt{{n}}}\:\:\left({n}\geqslant\mathrm{1}\right) \\ $$$${is}\:\left({v}_{{n}} \right)\:{convergente}? \\ $$
Question Number 83020 Answers: 0 Comments: 0
$${find}\:{the}\:{sequence}\:{u}_{{n}} \:{wich}\:{verify}\:{u}_{{n}} +{u}_{{n}+\mathrm{1}} =\frac{{sin}\left({n}\right)}{{n}}\:\:\forall{n}>\mathrm{0} \\ $$
Question Number 83019 Answers: 1 Comments: 1
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{\mathrm{1}−\sqrt{\mathrm{1}+{x}+{x}^{\mathrm{2}} }{cos}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{3}} } \\ $$
Question Number 83010 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ch}\left({cos}\left(\mathrm{2}{x}\right)\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 83009 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({chx}\right)}{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx} \\ $$
Question Number 83008 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ch}\left({cosx}\right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$
Question Number 82995 Answers: 1 Comments: 1
Question Number 82993 Answers: 1 Comments: 0
Question Number 82991 Answers: 1 Comments: 2
Question Number 82988 Answers: 1 Comments: 3
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} \:}\mathrm{cos}\:\mathrm{x}}{\mathrm{x}^{\mathrm{4}} } \\ $$
Question Number 82985 Answers: 1 Comments: 0
Question Number 82975 Answers: 0 Comments: 7
$$\mathrm{To}\:\mathrm{the}\:\mathrm{member}\:\mathrm{in}\:\mathrm{forum}.\:\mathrm{please}\: \\ $$$$\mathrm{give}\:\mathrm{an}\:\mathrm{opinion}\:\mathrm{on}\:\mathrm{this}\:\mathrm{matter}. \\ $$$$\mathrm{George}\:,\:\mathrm{Lucia}\:\mathrm{and}\:\mathrm{12}\:\mathrm{of}\:\mathrm{their} \\ $$$$\mathrm{friends}\:\mathrm{will}\:\mathrm{sit}\:\mathrm{around}\:\mathrm{a}\:\mathrm{round}\:\mathrm{table}. \\ $$$$\mathrm{Many}\:\mathrm{of}\:\mathrm{their}\:\mathrm{arrangements}\:\mathrm{sit}\: \\ $$$$\mathrm{if}\:\mathrm{George}\:\mathrm{and}\:\mathrm{Lucia}\:\mathrm{always}\:\mathrm{flank} \\ $$$$\mathrm{5}\:\mathrm{of}\:\mathrm{their}\:\mathrm{friends}? \\ $$
Pg 1306 Pg 1307 Pg 1308 Pg 1309 Pg 1310 Pg 1311 Pg 1312 Pg 1313 Pg 1314 Pg 1315
Terms of Service
Privacy Policy
Contact: info@tinkutara.com