Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1305
Question Number 80639 Answers: 0 Comments: 2
$$\frac{\mathrm{log}_{\mathrm{2}} ^{\mathrm{2}} \:\left({x}−\mathrm{4}\right)−\mathrm{log}_{\mathrm{2}} \left(\mathrm{4}−{x}\right)^{\mathrm{8}} +\mathrm{16}}{\mathrm{30}−\mathrm{3}{x}−\left(\mathrm{4}−{x}\right)^{\mathrm{2}} }\:\geqslant\:\mathrm{0} \\ $$
Question Number 80620 Answers: 0 Comments: 1
Question Number 80614 Answers: 0 Comments: 1
Question Number 80613 Answers: 1 Comments: 2
$${Q}.{find}\:\:\:\frac{{d}}{{dx}}\left({x}!\right) \\ $$
Question Number 80612 Answers: 0 Comments: 3
$$\:\Psi\left({x}\right)=\int_{\mathrm{1}} ^{{x}} \frac{\mathrm{1}}{\sqrt{\mathrm{1}−{e}^{{t}} }}\:{dt}\:\:\:\:\:\forall{x}\in\mathbb{R} \\ $$$${prove}\:{that} \\ $$$$\Psi\left({x}\right)=\mathrm{2}{ln}\left(\frac{\mathrm{1}−\sqrt{\mathrm{1}−{e}^{{x}} }}{\mathrm{1}−\sqrt{\mathrm{1}−{e}}}\right)−{x}+\mathrm{1} \\ $$
Question Number 80607 Answers: 0 Comments: 0
Question Number 80595 Answers: 1 Comments: 2
Question Number 80587 Answers: 1 Comments: 6
Question Number 80586 Answers: 0 Comments: 1
Question Number 80585 Answers: 0 Comments: 9
Question Number 80580 Answers: 2 Comments: 0
$${Find}\:{general}\:{solution}\:{for}\:{k}\:{such}\:{that} \\ $$$$\mathrm{7}^{{k}} \equiv\mathrm{1}\:{mod}\:\left(\mathrm{35}\right) \\ $$
Question Number 80559 Answers: 0 Comments: 0
Question Number 80550 Answers: 1 Comments: 1
Question Number 80574 Answers: 1 Comments: 2
Question Number 80543 Answers: 1 Comments: 6
Question Number 80540 Answers: 0 Comments: 1
Question Number 80539 Answers: 0 Comments: 1
Question Number 80529 Answers: 0 Comments: 1
Question Number 80519 Answers: 2 Comments: 2
$$\mathrm{g}\left({x}\right)=\mathrm{2}{cos}^{\mathrm{2}} {x}+{sin}\left(\mathrm{2}{x}\right). \\ $$$${g}'\left({x}\right)=\:..........? \\ $$
Question Number 80515 Answers: 0 Comments: 1
$$\int\frac{{dx}}{\left(\mathrm{1}+{x}^{\phi} \right)^{\phi} } \\ $$
Question Number 80508 Answers: 0 Comments: 4
$${solve}\:{the}\:{D}.{E}\: \\ $$$${x}^{\mathrm{2}} +\left({y}^{\mathrm{2}} +\mathrm{1}\right){dx}+{y}\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\:{dy}=\mathrm{0} \\ $$
Question Number 80505 Answers: 0 Comments: 8
$$\mathrm{Given}\:\mathrm{that}\:\:\mathrm{7}^{{k}} \:\equiv\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{15}\right) \\ $$$$\left.\mathrm{a}\right)\:\mathrm{Write}\:\mathrm{down}\:\mathrm{three}\:\mathrm{values}\:\mathrm{of}\:{k}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\: \\ $$$$\mathrm{the}\:\mathrm{equation}\:\:\mathrm{7}^{{k}} \:\equiv\:\mathrm{1}\:\left({mod}\:\mathrm{15}\right) \\ $$
Question Number 80493 Answers: 0 Comments: 4
$$\mathrm{Solve}\:\mathrm{for}\:\:\mathrm{a},\:\mathrm{b}\:\mathrm{and}\:\mathrm{c} \\ $$$$\:\:\:\:\:\:\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:\:=\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:.....\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\mathrm{abc}\:\:\:=\:\:\:−\:\frac{\mathrm{1}}{\mathrm{4}}\:\:\:\:\:......\:\left(\mathrm{iii}\right) \\ $$$$\:\:\:\:\:\:\mathrm{ab}\:+\:\mathrm{ac}\:+\:\mathrm{bc}\:\:\:=\:\:\frac{\mathrm{3}}{\mathrm{2}}\:\:\:\:\:\:\:......\:\left(\mathrm{iv}\right) \\ $$
Question Number 80485 Answers: 0 Comments: 1
$${what}\:{is}\:{the}\:{king}\:\:{rule}? \\ $$
Question Number 80477 Answers: 0 Comments: 5
Question Number 80475 Answers: 0 Comments: 0
Pg 1300 Pg 1301 Pg 1302 Pg 1303 Pg 1304 Pg 1305 Pg 1306 Pg 1307 Pg 1308 Pg 1309
Terms of Service
Privacy Policy
Contact: info@tinkutara.com