Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1305
Question Number 84528 Answers: 0 Comments: 3
$$\mathrm{1}=\mathrm{2} \\ $$
Question Number 84515 Answers: 1 Comments: 0
$${Q}.{solve} \\ $$$${x}^{\mathrm{3}} −{x}={x}! \\ $$
Question Number 84512 Answers: 1 Comments: 0
Question Number 84510 Answers: 2 Comments: 0
Question Number 84505 Answers: 0 Comments: 1
$$\left.\mathrm{2}\right){calculate}\:\:\:{I}\left(\xi\right)\:=\int_{\xi} ^{\mathrm{1}} \:\:\:\:\:\:\frac{{dx}}{\sqrt{\mathrm{1}+\xi{x}^{\mathrm{2}} −\sqrt{\mathrm{1}−\xi{x}^{\mathrm{2}} }}} \\ $$$$\left.\mathrm{1}\right){find}\:{lim}_{\xi\rightarrow\mathrm{0}} \:\:{I}\left(\xi\right) \\ $$
Question Number 84498 Answers: 0 Comments: 1
$$\int\sqrt{{x}}\:{cos}\sqrt{{x}}\:{dx} \\ $$
Question Number 84497 Answers: 0 Comments: 1
$$\int\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{5}} }\:{dx} \\ $$$$ \\ $$
Question Number 84496 Answers: 1 Comments: 1
Question Number 84492 Answers: 0 Comments: 3
$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{3}}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left({x}−\frac{\pi}{\mathrm{3}}\right)}{\mathrm{1}−\mathrm{2cos}\:\left({x}\right)}\:=\: \\ $$
Question Number 84477 Answers: 2 Comments: 0
$$\left(\mathrm{ycos}\:\mathrm{x}+\mathrm{2xe}^{\mathrm{y}} \right)\mathrm{dx}+\left(\mathrm{sin}\:\mathrm{x}+\mathrm{x}^{\mathrm{2}} \mathrm{e}^{\mathrm{y}} −\mathrm{1}\right)\mathrm{dy}=\mathrm{0} \\ $$
Question Number 84469 Answers: 1 Comments: 0
$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$\mathrm{sin}\:\mathrm{3b}\:+\:\left(\mathrm{cos}\:\mathrm{b}+\mathrm{sin}\:\mathrm{b}\right)\left(\mathrm{1}−\mathrm{2sin}\:\mathrm{2b}\right) \\ $$$$=\:\mathrm{cos}\:\mathrm{3b} \\ $$
Question Number 84467 Answers: 0 Comments: 0
$$\int\:\mathrm{ln}\left(\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)\right)\:\mathrm{dx} \\ $$
Question Number 84461 Answers: 0 Comments: 2
$${p}^{\mathrm{2}} +\mathrm{3}{q}^{\mathrm{2}} =\mathrm{11907},\:{p},{q}\in\mathbb{Z},{find}\:{p\&q} \\ $$
Question Number 84460 Answers: 0 Comments: 2
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\mathrm{2}+\mathrm{x}\right)−\mathrm{sin}\:\left(\mathrm{2}−\mathrm{x}\right)}{\mathrm{x}} \\ $$
Question Number 84459 Answers: 1 Comments: 2
$$\begin{cases}{\mathrm{log}_{\mathrm{10}} \left(\mathrm{x}\right)+\frac{\mathrm{log}_{\mathrm{10}} \left(\mathrm{x}\right)+\mathrm{8log}_{\mathrm{10}} \left(\mathrm{y}\right)}{\mathrm{log}_{\mathrm{10}} ^{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{log}_{\mathrm{10}} ^{\mathrm{2}} \left(\mathrm{y}\right)}=\mathrm{3}}\\{\mathrm{log}_{\mathrm{10}} \left(\mathrm{y}\right)+\frac{\mathrm{8log}_{\mathrm{10}} \left(\mathrm{x}\right)−\mathrm{log}_{\mathrm{10}} \left(\mathrm{y}\right)}{\mathrm{log}_{\mathrm{10}} ^{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{log}_{\mathrm{10}} ^{\mathrm{2}} \left(\mathrm{y}\right)}=\mathrm{0}}\end{cases} \\ $$$$\mathrm{find}\:\mathrm{x}\:\&\:\mathrm{y} \\ $$
Question Number 84456 Answers: 0 Comments: 1
$${y}={ln}\sqrt{\frac{{a}+{sin}\left({x}\right)}{{b}−{sin}\left({x}\right)}} \\ $$$${if}\:\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} −{tan}^{\mathrm{2}} \left({x}\right)=\mathrm{1} \\ $$$${show}\:{that}\:{a}={b} \\ $$
Question Number 84448 Answers: 1 Comments: 0
$$\mathrm{5}^{\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{7}\mid\mathrm{x}\mid+\mathrm{10}}{\mathrm{x}^{\mathrm{2}} −\mathrm{6x}+\mathrm{9}}} \:<\:\mathrm{1} \\ $$
Question Number 84442 Answers: 1 Comments: 0
Question Number 84441 Answers: 1 Comments: 1
Question Number 84430 Answers: 0 Comments: 4
Question Number 84420 Answers: 1 Comments: 2
Question Number 84415 Answers: 3 Comments: 0
$$\int\:\sqrt{\mathrm{x}\:−\:\sqrt{\mathrm{4}\:−\:\mathrm{x}^{\mathrm{2}} }}\:\:\mathrm{dx} \\ $$
Question Number 84409 Answers: 3 Comments: 4
Question Number 84407 Answers: 1 Comments: 0
$$\mathrm{dy}+\mathrm{2xy}\:\mathrm{dx}\:=\:\mathrm{xe}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{y}^{\mathrm{3}} \:\mathrm{dx} \\ $$$$ \\ $$
Question Number 84404 Answers: 0 Comments: 1
$$\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{6}\right)...\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2020}\right)=\mathrm{1} \\ $$$$\mathrm{x}=? \\ $$
Question Number 84399 Answers: 0 Comments: 1
Pg 1300 Pg 1301 Pg 1302 Pg 1303 Pg 1304 Pg 1305 Pg 1306 Pg 1307 Pg 1308 Pg 1309
Terms of Service
Privacy Policy
Contact: info@tinkutara.com