Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1304
Question Number 81221 Answers: 0 Comments: 1
Question Number 81219 Answers: 1 Comments: 4
$${given}\:{a}\:{probability}\: \\ $$$${function}\: \\ $$$${f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{3}},\:\mathrm{1}\leqslant{x}\leqslant\mathrm{4}\:{and}\:{f}\left({x}\right)=\mathrm{0} \\ $$$${in}\:{other}\:{x}.\:{find}\:{the}\:{value}\: \\ $$$${of}\:\sigma^{\mathrm{2}\:} \:? \\ $$
Question Number 81217 Answers: 2 Comments: 0
Question Number 81251 Answers: 1 Comments: 7
Question Number 81206 Answers: 1 Comments: 1
Question Number 81195 Answers: 0 Comments: 7
$${what}\:{is}\:{asymtote}\:{og}\:{function} \\ $$$${y}^{\mathrm{2}} \left({x}−\mathrm{2}{a}\right)={x}^{\mathrm{3}} −{a}^{\mathrm{3}} \:? \\ $$
Question Number 81193 Answers: 1 Comments: 3
Question Number 81188 Answers: 2 Comments: 1
Question Number 81223 Answers: 1 Comments: 0
$${x}\left(\mathrm{3}^{{x}} +\mathrm{2}\right)=\mathrm{3}\left(\mathrm{1}−\mathrm{3}^{{x}} \right)−{x}^{\mathrm{2}} \\ $$
Question Number 81222 Answers: 1 Comments: 0
Question Number 81170 Answers: 0 Comments: 8
$${if}\:\mathrm{cos}\:^{\mathrm{3}} {x}+\mathrm{cos}\:^{−\mathrm{3}} {x}\:\:=\mathrm{0} \\ $$$${find}\:\mathrm{sin}\:\mathrm{2}{x}+\mathrm{cos}\:\mathrm{2}{x} \\ $$
Question Number 81165 Answers: 1 Comments: 3
$${let}\:{f}\left({x}\right)=\frac{\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{2}\left({cos}\theta\right){x}\:+\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:\int_{\mathrm{0}} ^{\infty} \:{f}\left({x}\right){dx} \\ $$$$\left.\mathrm{3}\right)\:{find}\:\int_{\mathrm{0}} ^{\infty} \:{f}^{\left({n}\right)} \left({x}\right){dx} \\ $$
Question Number 81158 Answers: 0 Comments: 0
$${S}=\frac{\mathrm{1}}{{cos}\mathrm{1}}+\frac{\mathrm{1}}{{cos}\mathrm{1}{cos}\mathrm{2}}+......+\frac{\mathrm{1}}{{cos}\mathrm{87}{cos}\mathrm{88}} \\ $$$${K}={tan}\mathrm{1}{tan}\mathrm{2}+{tan}\mathrm{3}{tan}\mathrm{4}+......+{tan}\mathrm{87}{tan}\mathrm{88} \\ $$
Question Number 81157 Answers: 0 Comments: 0
$${Let}\:{n}\geqslant\mathrm{2}\:,\:{for}\:\:{x}\in\left[\mathrm{0},\mathrm{1}\right]\:\::\:\:\:{let}\:\:{consider}\:\:{A}\left({x}\right)=\left\{\:{u}\in\mathbb{R}_{+} ^{\ast} \:\backslash\:\:\:{x}<{u}^{{n}} \right\}\: \\ $$$$\left.\mathrm{1}\right){Prove}\:\:{that}\:{if}\:\:\:{a},{b}\in\left[\mathrm{0},\mathrm{1}\right]\:\:\:\:\:\:\:\:\:\:{a}\leqslant{b}\:\Leftrightarrow{A}\left({a}\right)\subseteq{A}\left({b}\right)\:\:\: \\ $$$$\left.\mathrm{2}\right){Deduce}\:\:\:\:\:{x}=\left[{infA}\left({x}\right)\:\right]^{{n}} \:\: \\ $$
Question Number 81149 Answers: 1 Comments: 0
Question Number 81139 Answers: 1 Comments: 6
Question Number 81133 Answers: 0 Comments: 1
$${find}\:{this}\: \\ $$$$\int\frac{\mathrm{1}}{{sin}^{\mathrm{2}} {x}\sqrt[{\mathrm{7}}]{{cot}^{\mathrm{4}} {x}}}{dx} \\ $$
Question Number 81134 Answers: 0 Comments: 0
$${prove}\:{A}×{B}\neq{B}×{A} \\ $$$${with}\:{A}\:{and}\:{B}\:{are}\:{matrices} \\ $$
Question Number 81135 Answers: 1 Comments: 1
Question Number 81130 Answers: 0 Comments: 0
$$\zeta\left({s}\right)=\mathrm{0} \\ $$
Question Number 81124 Answers: 1 Comments: 0
Question Number 81123 Answers: 0 Comments: 3
Question Number 81122 Answers: 1 Comments: 4
Question Number 81104 Answers: 0 Comments: 4
$$\left(\bar {{a}}\:×\bar {{b}}\:\right).\bar {{c}}\:=\:\left({a}×{c}\right)\:.\:\left({b}×{c}\right).\:{it}\:{right}? \\ $$
Question Number 81115 Answers: 0 Comments: 0
$$\mathrm{e}^{\mathrm{x}} \int\frac{\mathrm{2}{csec}^{\mathrm{2}} \theta\:{d}\theta}{\left[\mathrm{4}+\left(\mathrm{2}{tan}\theta\right)^{\mathrm{2}} \right]^{\mathrm{3}/\mathrm{2}} }\:\:= \\ $$$$\mathrm{e}^{\mathrm{x}} \int\frac{\mathrm{2}{csec}^{\mathrm{2}} \theta\:{d}\theta}{\left[\mathrm{4}+\left(\mathrm{2}{tan}\theta\right)^{\mathrm{2}} \right]^{\mathrm{3}/\mathrm{2}} }\:\:= \\ $$
Question Number 81100 Answers: 0 Comments: 2
$$\int\:\frac{{x}\:{dx}}{\left(\mathrm{tan}\:{x}+\mathrm{cot}\:{x}\right)^{\mathrm{2}} }\:=\:? \\ $$
Pg 1299 Pg 1300 Pg 1301 Pg 1302 Pg 1303 Pg 1304 Pg 1305 Pg 1306 Pg 1307 Pg 1308
Terms of Service
Privacy Policy
Contact: info@tinkutara.com