Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1304

Question Number 83899    Answers: 0   Comments: 1

Defined a function f(x) such that f(1−x)+2f(x)= nx for m ,n > 1 , the value of ∫ _1 ^( m) (2n+6f((m/x))) dx is ...

$$\mathrm{Defined}\:\mathrm{a}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{such}\: \\ $$$$\mathrm{that}\:\mathrm{f}\left(\mathrm{1}−\mathrm{x}\right)+\mathrm{2f}\left(\mathrm{x}\right)=\:\mathrm{nx}\: \\ $$$$\mathrm{for}\:\mathrm{m}\:,\mathrm{n}\:>\:\mathrm{1}\:,\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\int\underset{\mathrm{1}} {\overset{\:\mathrm{m}} {\:}}\left(\mathrm{2n}+\mathrm{6f}\left(\frac{\mathrm{m}}{\mathrm{x}}\right)\right)\:\mathrm{dx}\:\mathrm{is}\:... \\ $$

Question Number 83898    Answers: 0   Comments: 4

∫(du/((√(u^2 −1 ))−u))

$$\int\frac{\mathrm{du}}{\sqrt{\mathrm{u}^{\mathrm{2}} −\mathrm{1}\:}−\mathrm{u}} \\ $$

Question Number 83893    Answers: 0   Comments: 1

∫(du/(u−u^2 ))

$$\int\frac{\mathrm{du}}{\mathrm{u}−\mathrm{u}^{\mathrm{2}} } \\ $$

Question Number 83886    Answers: 0   Comments: 15

To the developers of TinkuTara: problem 1: i get no notifications when my posts are updated. problem 2: i can edit my post, see picture 1, but the content is not visiable, see picture 2.

$${To}\:{the}\:{developers}\:{of}\:{TinkuTara}: \\ $$$${problem}\:\mathrm{1}: \\ $$$${i}\:{get}\:{no}\:{notifications}\:{when}\:{my}\:{posts} \\ $$$${are}\:{updated}. \\ $$$$ \\ $$$${problem}\:\mathrm{2}: \\ $$$${i}\:{can}\:{edit}\:{my}\:{post},\:{see}\:{picture}\:\mathrm{1},\:{but} \\ $$$${the}\:{content}\:{is}\:{not}\:{visiable},\:{see}\:{picture}\:\mathrm{2}. \\ $$

Question Number 83935    Answers: 0   Comments: 0

If x^4 and higher powers of x are neglected, show that (√((((1−x)/(1+x+x^2 )))=1−x+(1/2)x^3 ))

$${If}\:\:\boldsymbol{{x}}^{\mathrm{4}} \:{and}\:{higher}\:{powers}\:{of}\:{x}\:{are}\:{neglected},\:{show}\:{that} \\ $$$$\sqrt{\left(\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}+{x}^{\mathrm{2}} }\right)=\mathrm{1}−{x}+\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{3}} } \\ $$

Question Number 83876    Answers: 0   Comments: 0

Question Number 83874    Answers: 1   Comments: 1

Question Number 83871    Answers: 0   Comments: 4

If equation { (((√(x^2 +y^2 ))+(√((x−4)^2 +y^2 ))+(√(x^2 +(y−3)^2 ))+(√((x−4)^2 +(y−3)^2 ))=10)),((x+2y= 5z)) :} has solution is (a,b,c). find a+2b+3c

$$\mathrm{If}\:\mathrm{equation}\: \\ $$$$\begin{cases}{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }+\sqrt{\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }+\sqrt{\mathrm{x}^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{3}\right)^{\mathrm{2}} }+\sqrt{\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{3}\right)^{\mathrm{2}} }=\mathrm{10}}\\{\mathrm{x}+\mathrm{2y}=\:\mathrm{5z}}\end{cases} \\ $$$$\mathrm{has}\:\mathrm{solution}\:\mathrm{is}\:\left(\mathrm{a},\mathrm{b},\mathrm{c}\right).\: \\ $$$$\mathrm{find}\:\mathrm{a}+\mathrm{2b}+\mathrm{3c}\: \\ $$

Question Number 83865    Answers: 0   Comments: 3

lim_(x→−∞ ) (x(√(2x+2))−x(√(2x+3)))

$$\underset{{x}\rightarrow−\infty\:} {\mathrm{lim}}\:\left(\mathrm{x}\sqrt{\mathrm{2x}+\mathrm{2}}−\mathrm{x}\sqrt{\mathrm{2x}+\mathrm{3}}\right) \\ $$

Question Number 83864    Answers: 0   Comments: 3

what Maclaurin series of function tan (x)?

$$\mathrm{what}\:\mathrm{Maclaurin}\:\mathrm{series}\:\mathrm{of}\:\mathrm{function} \\ $$$$\mathrm{tan}\:\left(\mathrm{x}\right)? \\ $$

Question Number 83861    Answers: 0   Comments: 3

An object of mass 7kg is sliding down a frictionless 20m inclined plane. Calculate the speed of the object when it reaches the ground.

$$\mathrm{An}\:\mathrm{object}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{7kg}\:\mathrm{is}\:\mathrm{sliding}\:\mathrm{down} \\ $$$$\mathrm{a}\:\mathrm{frictionless}\:\mathrm{20m}\:\mathrm{inclined}\:\mathrm{plane}. \\ $$$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{object}\:\mathrm{when}\: \\ $$$$\mathrm{it}\:\mathrm{reaches}\:\mathrm{the}\:\mathrm{ground}. \\ $$

Question Number 83859    Answers: 0   Comments: 1

lim_(x→0) ((1/x^2 )− cot^2 x)= ?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\:\mathrm{cot}\:^{\mathrm{2}} {x}\right)=\:? \\ $$

Question Number 83852    Answers: 0   Comments: 3

f(α)=∫_0 ^∞ ((e^(−αx) sin(x))/x)dx

$${f}\left(\alpha\right)=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−\alpha{x}} {sin}\left({x}\right)}{{x}}{dx} \\ $$

Question Number 83850    Answers: 2   Comments: 1

Find the maximum value of the function f, defined by f(x) = (x/(1+ x^2 )) , x∈R

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:{f},\:\mathrm{defined}\:\mathrm{by} \\ $$$$\:{f}\left({x}\right)\:=\:\frac{{x}}{\mathrm{1}+\:{x}^{\mathrm{2}} }\:,\:{x}\in\mathbb{R} \\ $$

Question Number 83849    Answers: 0   Comments: 3

Gven that y = e^(−x) sinbx ,where b is a constant,show that (d^2 y/dx^2 ) + 2(dy/dx) + (1 + b^2 )y = 0.

$$\mathrm{Gven}\:\mathrm{that}\:{y}\:=\:{e}^{−{x}} \mathrm{sin}{bx}\:,\mathrm{where}\:{b}\:\mathrm{is}\:\mathrm{a}\:\mathrm{constant},\mathrm{show}\:\mathrm{that} \\ $$$$\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\mathrm{2}\frac{{dy}}{{dx}}\:+\:\left(\mathrm{1}\:+\:{b}^{\mathrm{2}} \right){y}\:=\:\mathrm{0}. \\ $$

Question Number 83842    Answers: 0   Comments: 4

∫((ln(x))/(ln(6x−x^2 )))dx

$$\int\frac{{ln}\left({x}\right)}{{ln}\left(\mathrm{6}{x}−{x}^{\mathrm{2}} \right)}{dx} \\ $$

Question Number 83834    Answers: 1   Comments: 2

Question Number 83824    Answers: 2   Comments: 1

Question Number 83822    Answers: 1   Comments: 1

Question Number 83819    Answers: 1   Comments: 0

If the function of f is continous in R and ∫ _0 ^( x) f(t)dt = ∫ _x ^( 1) t^2 f(t) dt + 2x^2 +4x+c , ∀x∈R. The value of constant c is

$$\mathrm{If}\:\mathrm{the}\:\mathrm{function}\:\mathrm{of}\:\mathrm{f}\:\mathrm{is}\:\mathrm{continous} \\ $$$$\mathrm{in}\:\mathbb{R}\:\mathrm{and}\:\int\underset{\mathrm{0}} {\overset{\:\mathrm{x}} {\:}}\:\mathrm{f}\left(\mathrm{t}\right)\mathrm{dt}\:=\:\int\underset{\mathrm{x}} {\overset{\:\mathrm{1}} {\:}}\mathrm{t}^{\mathrm{2}} \mathrm{f}\left(\mathrm{t}\right)\:\mathrm{dt}\:+\: \\ $$$$\mathrm{2x}^{\mathrm{2}} +\mathrm{4x}+\mathrm{c}\:,\:\forall\mathrm{x}\in\mathbb{R}. \\ $$$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{constant}\:\mathrm{c}\:\mathrm{is}\: \\ $$

Question Number 83812    Answers: 0   Comments: 0

Question Number 83811    Answers: 0   Comments: 2

Question Number 83807    Answers: 2   Comments: 1

Evaluate: ∫ (( 1)/(ax^2 +bx+c))dx

$$\:\:\boldsymbol{\mathrm{Evaluate}}: \\ $$$$\:\:\int\:\:\frac{\:\mathrm{1}}{\boldsymbol{\mathrm{ax}}^{\mathrm{2}} +\boldsymbol{\mathrm{bx}}+\boldsymbol{\mathrm{c}}}\boldsymbol{\mathrm{dx}} \\ $$

Question Number 83805    Answers: 3   Comments: 1

∫_0 ^(π/2) ((sin^2 (x))/(sin(x)+cos(x))) dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}^{\mathrm{2}} \left({x}\right)}{{sin}\left({x}\right)+{cos}\left({x}\right)}\:{dx} \\ $$

Question Number 83892    Answers: 0   Comments: 0

∫(du/(u−u^2 ))

$$\int\frac{\mathrm{du}}{\mathrm{u}−\mathrm{u}^{\mathrm{2}} } \\ $$

Question Number 83891    Answers: 0   Comments: 3

1111^(2019) mod 11111=....?

$$ \\ $$$$ \\ $$$$\mathrm{1111}^{\mathrm{2019}} \:\mathrm{mod}\:\mathrm{11111}=....? \\ $$

  Pg 1299      Pg 1300      Pg 1301      Pg 1302      Pg 1303      Pg 1304      Pg 1305      Pg 1306      Pg 1307      Pg 1308   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com