Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1304

Question Number 84165    Answers: 1   Comments: 1

∫_0 ^1 ((ln(x+2))/(x^2 −2x+4)) dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}+\mathrm{2}\right)}{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{4}}\:{dx} \\ $$

Question Number 84163    Answers: 2   Comments: 0

∫ sin (50x) sin^(49) (x) dx ?

$$\int\:\mathrm{sin}\:\left(\mathrm{50}{x}\right)\:\mathrm{sin}\:^{\mathrm{49}} \left({x}\right)\:{dx}\:? \\ $$

Question Number 84157    Answers: 3   Comments: 0

if a circle having an equation x^2 +y^2 −6x−8y=0 is intersected at A and B by x+y=1.find the equation of the circle on AB as diameter

$${if}\:{a}\:{circle}\:{having}\:{an}\: \\ $$$${equation}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{6}{x}−\mathrm{8}{y}=\mathrm{0} \\ $$$${is}\:{intersected}\:{at}\:{A}\:{and}\:{B} \\ $$$${by}\:{x}+{y}=\mathrm{1}.{find}\:{the}\: \\ $$$${equation}\:{of}\:{the}\:{circle} \\ $$$${on}\:{AB}\:{as}\:{diameter} \\ $$

Question Number 84156    Answers: 0   Comments: 2

Question Number 84152    Answers: 0   Comments: 1

Question Number 84136    Answers: 1   Comments: 0

show that: tan3x=((3+tan^2 x)/(1−3tan^2 x))×tanx

$${show}\:{that}: \\ $$$${tan}\mathrm{3}{x}=\frac{\mathrm{3}+{tan}^{\mathrm{2}} {x}}{\mathrm{1}−\mathrm{3}{tan}^{\mathrm{2}} {x}}×{tanx} \\ $$

Question Number 84135    Answers: 2   Comments: 0

find the area between the function y=2sin2x −1 and the x−axis on [−π,(π/2)]

$${find}\:{the}\:{area}\:{between}\:{the}\:{function}\: \\ $$$${y}=\mathrm{2}{sin}\mathrm{2}{x}\:−\mathrm{1}\:{and}\:\:{the}\:{x}−{axis}\:\:{on}\:\left[−\pi,\frac{\pi}{\mathrm{2}}\right] \\ $$

Question Number 84134    Answers: 1   Comments: 0

find the general solution of the equation 2sin 3θ = sin 2θ

$$\mathrm{find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\mathrm{2sin}\:\mathrm{3}\theta\:=\:\mathrm{sin}\:\mathrm{2}\theta \\ $$

Question Number 84130    Answers: 0   Comments: 2

lim_(x→+∞) x((√(x^2 +2x))−2(√(x^2 +x))+x)

$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}x}\left(\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}}−\mathrm{2}\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}}+\mathrm{x}\right) \\ $$

Question Number 84126    Answers: 1   Comments: 0

∫((5−x)/(1+(√((x−4)))))dx

$$\int\frac{\mathrm{5}−{x}}{\mathrm{1}+\sqrt{\left({x}−\mathrm{4}\right)}}\boldsymbol{{dx}} \\ $$

Question Number 84125    Answers: 0   Comments: 0

is it possible to find the no. of positive integral solutions of x+y+2z+3c=7

$${is}\:{it}\:{possible}\:{to}\:{find}\: \\ $$$${the}\:{no}.\:{of}\:{positive}\: \\ $$$${integral}\:{solutions} \\ $$$${of}\:{x}+{y}+\mathrm{2}{z}+\mathrm{3}{c}=\mathrm{7} \\ $$

Question Number 84123    Answers: 0   Comments: 1

∫((5−x)/(1+(√((x−4)))))

$$\int\frac{\mathrm{5}−\boldsymbol{{x}}}{\mathrm{1}+\sqrt{\left(\boldsymbol{{x}}−\mathrm{4}\right)}} \\ $$

Question Number 84121    Answers: 0   Comments: 4

given that g(x) = { ((x + 2 , if 0 ≤ x < 2)),((x^2 , if 2 ≤ x < 4)) :} is periodic of period 4. sketch the curve for g(x) in the interval 0≤ x < 8 evaluate g(−6).

$$\mathrm{given}\:\:\mathrm{that} \\ $$$$\:\mathrm{g}\left({x}\right)\:=\:\begin{cases}{{x}\:+\:\mathrm{2}\:,\:\mathrm{if}\:\:\mathrm{0}\:\leqslant\:{x}\:<\:\mathrm{2}}\\{{x}^{\mathrm{2}} \:,\:\mathrm{if}\:\:\mathrm{2}\:\leqslant\:{x}\:<\:\mathrm{4}}\end{cases} \\ $$$$\mathrm{is}\:\mathrm{periodic}\:\mathrm{of}\:\mathrm{period}\:\mathrm{4}.\: \\ $$$$\mathrm{sketch}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{for}\:\mathrm{g}\left({x}\right)\:\mathrm{in}\:\mathrm{the}\:\mathrm{interval} \\ $$$$\:\:\mathrm{0}\leqslant\:{x}\:<\:\mathrm{8} \\ $$$$\mathrm{evaluate}\:\:\mathrm{g}\left(−\mathrm{6}\right). \\ $$

Question Number 84109    Answers: 1   Comments: 2

Question Number 84106    Answers: 0   Comments: 1

∫ (x^4 /(√(1−x^4 ))) dx = ?

$$\int\:\frac{\mathrm{x}^{\mathrm{4}} }{\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }}\:\mathrm{dx}\:=\:? \\ $$

Question Number 84101    Answers: 2   Comments: 0

Find the reduction formula ∫x^n e^(ax) dx

$$\:\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{reduction}}\:\boldsymbol{\mathrm{formula}} \\ $$$$\:\:\int\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}} \boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{ax}}} \:\boldsymbol{\mathrm{dx}} \\ $$

Question Number 84100    Answers: 2   Comments: 0

Find the differential equations: x(dy/dx)= y− (√(x^2 +y^2 ))

$$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equations}: \\ $$$$\:\:\mathrm{x}\frac{\mathrm{dy}}{\mathrm{dx}}=\:\mathrm{y}−\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} } \\ $$

Question Number 84087    Answers: 0   Comments: 1

∫_0 ^3 (√(1+sinh^2 t)) dt

$$\int_{\mathrm{0}} ^{\mathrm{3}} \sqrt{\mathrm{1}+{sinh}^{\mathrm{2}} {t}}\:{dt} \\ $$

Question Number 84085    Answers: 1   Comments: 0

solve (d/dr)(r(dθ/dr))=0

$${solve} \\ $$$$\frac{{d}}{{dr}}\left({r}\frac{{d}\theta}{{dr}}\right)=\mathrm{0} \\ $$

Question Number 84083    Answers: 1   Comments: 3

lim_(a→x) ((((√x) −(√a) −(√(x−a ))))/(√(x^2 −a^2 ))) =

$$\underset{\mathrm{a}\rightarrow\mathrm{x}} {\mathrm{lim}}\:\frac{\left(\sqrt{\mathrm{x}}\:−\sqrt{\mathrm{a}}\:−\sqrt{\mathrm{x}−\mathrm{a}\:}\right)}{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }}\:= \\ $$

Question Number 84117    Answers: 2   Comments: 0

Question Number 84068    Answers: 0   Comments: 4

Question Number 84067    Answers: 3   Comments: 0

If lx+my=1 touches the curve (ax)^n +(by)^n =1, show that ((l/a))^(n/(n−1)) +((m/b))^(n/(n−1)) =1.

$$\:\mathrm{If}\:\boldsymbol{{lx}}+\boldsymbol{{my}}=\mathrm{1}\:\mathrm{touches}\:\mathrm{the}\:\mathrm{curve}\:\left(\boldsymbol{\mathrm{ax}}\right)^{\boldsymbol{\mathrm{n}}} +\left(\boldsymbol{\mathrm{by}}\right)^{\boldsymbol{\mathrm{n}}} =\mathrm{1},\:\mathrm{show}\:\mathrm{that} \\ $$$$\:\left(\frac{\boldsymbol{{l}}}{\boldsymbol{{a}}}\right)^{\frac{\boldsymbol{{n}}}{\boldsymbol{{n}}−\mathrm{1}}} +\left(\frac{\boldsymbol{{m}}}{\boldsymbol{{b}}}\right)^{\frac{\boldsymbol{{n}}}{\boldsymbol{{n}}−\mathrm{1}}} =\mathrm{1}. \\ $$

Question Number 84065    Answers: 1   Comments: 2

Determine a and b in order that _(x→0) ^(lim) ((x(1+a cos x)−b sin x )/x^3 )=1.

$$ \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{Determine}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{b}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{order}}\:\boldsymbol{\mathrm{that}} \\ $$$$\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\overset{\boldsymbol{\mathrm{lim}}} {\:}}\:\frac{\boldsymbol{\mathrm{x}}\left(\mathrm{1}+\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{cos}}\:\boldsymbol{\mathrm{x}}\right)−\boldsymbol{\mathrm{b}}\:\boldsymbol{\mathrm{sin}}\:\boldsymbol{\mathrm{x}}\:}{\boldsymbol{\mathrm{x}}^{\mathrm{3}} }=\mathrm{1}. \\ $$

Question Number 84063    Answers: 0   Comments: 0

Find the value of 𝛉 in the Mean Value Theorem f(x+h)=f(x)+h f^( ′) (x+𝛉h) if f(x)= (1/x).

$$ \\ $$$$\:\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\theta}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{Mean}}\:\boldsymbol{\mathrm{Value}} \\ $$$$\:\boldsymbol{\mathrm{Theorem}}\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{h}}\right)=\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)+\boldsymbol{\mathrm{h}}\:\boldsymbol{\mathrm{f}}^{\:'} \:\left(\boldsymbol{\mathrm{x}}+\boldsymbol{\theta\mathrm{h}}\right)\:\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}. \\ $$

Question Number 84059    Answers: 1   Comments: 2

Find (dy/dx) of x^m x^n =(x+y)^(m+n) .

$$ \\ $$$$\:\boldsymbol{\mathrm{Find}}\:\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}\:\boldsymbol{\mathrm{of}}\:\:\:\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{m}}} \boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}} \:=\left(\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}\right)^{\boldsymbol{\mathrm{m}}+\boldsymbol{\mathrm{n}}} . \\ $$

  Pg 1299      Pg 1300      Pg 1301      Pg 1302      Pg 1303      Pg 1304      Pg 1305      Pg 1306      Pg 1307      Pg 1308   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com