Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1304

Question Number 83492    Answers: 0   Comments: 0

f(x)= (1/(2(√x))) lim_(t→0) ((f(2x−t)+f(2x−2t)−2f(2x+t))/t)

$$\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{x}}} \\ $$$$\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{f}\left(\mathrm{2x}−\mathrm{t}\right)+\mathrm{f}\left(\mathrm{2x}−\mathrm{2t}\right)−\mathrm{2f}\left(\mathrm{2x}+\mathrm{t}\right)}{\mathrm{t}} \\ $$

Question Number 83491    Answers: 0   Comments: 1

f(x) = (((√(1+sin (2x)))−(√(1−2sin (x))))/x) g(x) = 2x+(√(2x)) find lim_(x→0) g(f(x))

$$\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\sqrt{\mathrm{1}+\mathrm{sin}\:\left(\mathrm{2x}\right)}−\sqrt{\mathrm{1}−\mathrm{2sin}\:\left(\mathrm{x}\right)}}{\mathrm{x}} \\ $$$$\mathrm{g}\left(\mathrm{x}\right)\:=\:\mathrm{2x}+\sqrt{\mathrm{2x}} \\ $$$$\mathrm{find}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{g}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\: \\ $$

Question Number 83420    Answers: 1   Comments: 4

find range x of function x−4(√y) = 2(√(x−y))

$$\mathrm{find}\:\mathrm{range}\:\mathrm{x}\:\mathrm{of}\:\mathrm{function}\: \\ $$$$\mathrm{x}−\mathrm{4}\sqrt{\mathrm{y}}\:=\:\mathrm{2}\sqrt{\mathrm{x}−\mathrm{y}} \\ $$

Question Number 83413    Answers: 1   Comments: 3

y = x ∣x∣ find y ′ ?

$$\mathrm{y}\:=\:\mathrm{x}\:\mid\mathrm{x}\mid \\ $$$$\mathrm{find}\:\mathrm{y}\:'\:? \\ $$

Question Number 83411    Answers: 2   Comments: 1

Question Number 83406    Answers: 3   Comments: 3

If u_1 +u_2 +u_3 +...+u_n = 2n^2 +n is a AP. find the value of u_1 +u_2 +u_3 +...+u_(2n−2) +u_(2n−1) .

$$\mathrm{If}\:\mathrm{u}_{\mathrm{1}} +\mathrm{u}_{\mathrm{2}} +\mathrm{u}_{\mathrm{3}} +...+\mathrm{u}_{\mathrm{n}} \:=\:\mathrm{2n}^{\mathrm{2}} +\mathrm{n}\: \\ $$$$\mathrm{is}\:\mathrm{a}\:\:\mathrm{AP}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{u}_{\mathrm{1}} +\mathrm{u}_{\mathrm{2}} +\mathrm{u}_{\mathrm{3}} +...+\mathrm{u}_{\mathrm{2n}−\mathrm{2}} +\mathrm{u}_{\mathrm{2n}−\mathrm{1}} \:. \\ $$

Question Number 83405    Answers: 0   Comments: 2

lim_(b→1^− ) ∫_0 ^b ((sin (x))/(√(1−x^2 ))) dx ?

$$\underset{\mathrm{b}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}\:\int_{\mathrm{0}} ^{\mathrm{b}} \:\frac{\mathrm{sin}\:\left(\mathrm{x}\right)}{\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx}\:?\: \\ $$

Question Number 83403    Answers: 1   Comments: 0

what is range function y = (1/((x−1)^2 ))

$$\mathrm{what}\:\mathrm{is}\:\mathrm{range}\:\mathrm{function}\: \\ $$$$\mathrm{y}\:=\:\frac{\mathrm{1}}{\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 83401    Answers: 0   Comments: 2

lim_(x→∞) (6−8xsin ((3/x)))= ?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{6}−\mathrm{8xsin}\:\left(\frac{\mathrm{3}}{\mathrm{x}}\right)\right)=\:? \\ $$

Question Number 83395    Answers: 0   Comments: 0

Let R be a relation such that R = {3,6,12,24} prove that R is a strict order relation.

$$\mathrm{Let}\:\mathrm{R}\:\mathrm{be}\:\mathrm{a}\:\mathrm{relation}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\mathrm{R}\:=\:\left\{\mathrm{3},\mathrm{6},\mathrm{12},\mathrm{24}\right\} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{R}\:\mathrm{is}\:\mathrm{a}\:\mathrm{strict}\:\mathrm{order} \\ $$$$\mathrm{relation}.\: \\ $$

Question Number 83385    Answers: 2   Comments: 1

∫((1+ae^(−(a+1)x) +(a+1)e^(−ax) )/x^2 ) dx, a∈z^+

$$\int\frac{\mathrm{1}+{ae}^{−\left({a}+\mathrm{1}\right){x}} +\left({a}+\mathrm{1}\right){e}^{−{ax}} }{{x}^{\mathrm{2}} }\:{dx},\:\:{a}\in{z}^{+} \\ $$

Question Number 83383    Answers: 1   Comments: 0

find ∫_0 ^2 ∫_0 ^(√(4−x^2 )) ∫_0 ^(2−z) zdxdydz pleas help me sir

$${find}\:\int_{\mathrm{0}} ^{\mathrm{2}} \int_{\mathrm{0}} ^{\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }} \int_{\mathrm{0}} ^{\mathrm{2}−{z}} {zdxdydz} \\ $$$${pleas}\:{help}\:{me}\:{sir} \\ $$

Question Number 83381    Answers: 0   Comments: 0

Given that the function f(x) = x^3 is differentiable in the interval (−2,2) us the mean value theorem to find the value of x for which the tangent to the curve is parrallel to the chord through the points (−2,8) and (2,8).

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function}\:{f}\left({x}\right)\:=\:{x}^{\mathrm{3}} \:\mathrm{is}\: \\ $$$$\mathrm{differentiable}\:\mathrm{in}\:\mathrm{the}\:\mathrm{interval}\:\left(−\mathrm{2},\mathrm{2}\right)\:\mathrm{us}\:\mathrm{the}\:\mathrm{mean} \\ $$$$\mathrm{value}\:\mathrm{theorem}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\: \\ $$$$\mathrm{tangent}\:\mathrm{to}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{is}\:\mathrm{parrallel}\:\mathrm{to}\:\mathrm{the}\:\mathrm{chord}\: \\ $$$$\mathrm{through}\:\mathrm{the}\:\mathrm{points}\:\left(−\mathrm{2},\mathrm{8}\right)\:\mathrm{and}\:\left(\mathrm{2},\mathrm{8}\right). \\ $$

Question Number 83378    Answers: 0   Comments: 2

x+y+z=1 x^2 +y^2 +z^2 =2 x^3 +y^3 +z^3 =3 find x^4 +y^4 +z^4 =?

$${x}+{y}+{z}=\mathrm{1} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{2} \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} =\mathrm{3} \\ $$$${find} \\ $$$${x}^{\mathrm{4}} +{y}^{\mathrm{4}} +{z}^{\mathrm{4}} =? \\ $$

Question Number 83373    Answers: 0   Comments: 4

Question Number 83372    Answers: 0   Comments: 1

Question Number 83370    Answers: 0   Comments: 3

Question Number 83369    Answers: 1   Comments: 2

Question Number 83367    Answers: 0   Comments: 1

∫_(−∞) ^∞ ((sin^7 (x))/x^7 )dx

$$\int_{−\infty} ^{\infty} \frac{{sin}^{\mathrm{7}} \left({x}\right)}{{x}^{\mathrm{7}} }{dx} \\ $$

Question Number 83361    Answers: 1   Comments: 1

lim_(x→0^+ ) ((1−cos (x))/(√x)) =

$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\left(\mathrm{x}\right)}{\sqrt{\mathrm{x}}}\:=\: \\ $$

Question Number 83354    Answers: 0   Comments: 2

Question Number 83352    Answers: 1   Comments: 6

(√(2sin^2 ((x/2))(1−cos (x)))) = −sin (−x)−5cos (x)

$$\sqrt{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)\left(\mathrm{1}−\mathrm{cos}\:\left(\mathrm{x}\right)\right)}\:=\:−\mathrm{sin}\:\left(−\mathrm{x}\right)−\mathrm{5cos}\:\left(\mathrm{x}\right) \\ $$

Question Number 83342    Answers: 1   Comments: 0

∫_0 ^1 ∫_0 ^( z) ∫_y ^1 ((z^(n+1) Li_1 (y))/((zx)^2 ))dx dy dz , ∀ n∈z

$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\:{z}} \int_{{y}} ^{\mathrm{1}} \frac{{z}^{{n}+\mathrm{1}} {Li}_{\mathrm{1}} \left({y}\right)}{\left({zx}\right)^{\mathrm{2}} }{dx}\:{dy}\:{dz}\:,\:\forall\:{n}\in{z} \\ $$

Question Number 83341    Answers: 1   Comments: 1

Find the maximum and minimum of the expression 𝚺_(i=1) ^n a_i x_i with 𝚺_(i=1) ^n (x_i −b_i )^2 =c^2 , where a_i , b_i and c are constants. (extracted and modified from Q83331)

$${Find}\:{the}\:{maximum}\:{and}\:{minimum} \\ $$$${of}\:{the}\:{expression}\:\underset{\boldsymbol{{i}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\boldsymbol{\sum}}{a}}_{\boldsymbol{{i}}} \boldsymbol{{x}}_{\boldsymbol{{i}}} \:{with} \\ $$$$\underset{\boldsymbol{{i}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\boldsymbol{\sum}}}\left(\boldsymbol{{x}}_{\boldsymbol{{i}}} −\boldsymbol{{b}}_{\boldsymbol{{i}}} \right)^{\mathrm{2}} =\boldsymbol{{c}}^{\mathrm{2}} ,\:{where}\:\boldsymbol{{a}}_{\boldsymbol{{i}}} ,\:\boldsymbol{{b}}_{\boldsymbol{{i}}} \:{and}\:\boldsymbol{{c}}\:{are} \\ $$$${constants}. \\ $$$$ \\ $$$$\left({extracted}\:{and}\:{modified}\:{from}\:{Q}\mathrm{83331}\right) \\ $$

Question Number 83340    Answers: 0   Comments: 0

by using the lagrange method solve the partial equatio (p−q=(z/(x+y)))

$${by}\:{using}\:{the}\:{lagrange}\:{method}\:{solve}\:{the}\:{partial}\:{equatio}\:\left({p}−{q}=\frac{{z}}{{x}+{y}}\right) \\ $$

Question Number 83338    Answers: 1   Comments: 0

∫ sin (3x) tan (2x) dx ?

$$\int\:\mathrm{sin}\:\left(\mathrm{3x}\right)\:\mathrm{tan}\:\left(\mathrm{2x}\right)\:\mathrm{dx}\:? \\ $$

  Pg 1299      Pg 1300      Pg 1301      Pg 1302      Pg 1303      Pg 1304      Pg 1305      Pg 1306      Pg 1307      Pg 1308   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com