Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1304
Question Number 83188 Answers: 1 Comments: 0
$$\mathrm{If}\:\underset{\mathrm{a}\:=\:\mathrm{0}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\:\left(\mathrm{2a}+\mathrm{1}\right)\mathrm{x}^{\mathrm{2}} +\left(\mathrm{n}^{\mathrm{2}} +\mathrm{4n}−\mathrm{5}\right)\mathrm{x}+\mathrm{16} \\ $$$$=\:\mathrm{0}\:\mathrm{is}\:\mathrm{a}\:\mathrm{perfect}\:\mathrm{square}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\mathrm{n}\:\in\:\mathbb{Z}^{+} \:.\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{x}\:+\mathrm{n}\:?\: \\ $$
Question Number 83166 Answers: 2 Comments: 2
$$\mathrm{what}\:\mathrm{is}\:\mathrm{coefficient}\:\mathrm{x}^{\mathrm{5}\:} \mathrm{in}\:\mathrm{expansion} \\ $$$$\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{5}} ×\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{4}} \: \\ $$
Question Number 83159 Answers: 1 Comments: 5
$$\mathrm{3x}\:\left(\mathrm{xy}−\mathrm{2}\right)\mathrm{dx}\:+\:\left(\mathrm{x}^{\mathrm{3}} +\mathrm{2y}\right)\:\mathrm{dy}\:=\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution} \\ $$
Question Number 83156 Answers: 1 Comments: 2
$${find}\:{the}\:{derivtive}\:{of}\:{y}={e}^{\mathrm{cos}\:{x}} \\ $$
Question Number 83149 Answers: 0 Comments: 3
$${y}={e}^{\mathrm{tan}{t}\:} \\ $$
Question Number 83164 Answers: 2 Comments: 2
$$ \\ $$$$ \\ $$$$\:\mathrm{Evaluate}: \\ $$$$\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{\:\:\mathrm{1}}{\mathrm{1}+\boldsymbol{\mathrm{cos}}\:\boldsymbol{\alpha}\:\boldsymbol{\mathrm{cos}}\:\boldsymbol{\mathrm{x}}}\boldsymbol{\mathrm{dx}} \\ $$
Question Number 83146 Answers: 2 Comments: 0
$$\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\:\frac{\sqrt{\mathrm{cot}\:{x}}}{\sqrt{\mathrm{cot}\:{x}}\:+\:\sqrt{\mathrm{tan}\:{x}}}\:{dx}\:= \\ $$
Question Number 83145 Answers: 1 Comments: 1
$$\:\underset{\:\mathrm{1}} {\overset{\mathrm{4}} {\int}}\:{e}^{\sqrt{{x}}} \:{dx}\:= \\ $$
Question Number 83144 Answers: 1 Comments: 0
$${show}\:{that} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{3}{n}−\mathrm{1}\right)}=\frac{\mathrm{1}}{\mathrm{6}}\left(\sqrt{\mathrm{3}}\:\pi−\mathrm{9}{log}\left(\mathrm{3}\right)+{log}\left(\mathrm{4096}\right)\right) \\ $$
Question Number 83139 Answers: 0 Comments: 0
$${let}\:\:\:{c}_{\mathrm{0}} \:>\mathrm{0}\:\:{and}\:\:\forall\:{n}\in\mathbb{N}\:\:{c}_{{n}+\mathrm{1}} =\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left({c}_{{n}} +\frac{\mathrm{1}}{{c}_{{n}} }\:\right)\:}\:\:\: \\ $$$${Explicit}\:\:{c}_{{n}} \:{in}\:{term}\:{of}\:{n}\:{and}\:\:{c}_{\mathrm{0}} \:\: \\ $$
Question Number 83131 Answers: 0 Comments: 3
$${y}=\boldsymbol{{x}}^{\mathrm{4ln}\:\boldsymbol{{x}}} \\ $$
Question Number 83127 Answers: 1 Comments: 0
$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{x}\sqrt{\mathrm{3}}\:+\mathrm{y}\: \\ $$$$\mathrm{if}\:\mathrm{x}^{\mathrm{2}} \:+\mathrm{y}^{\mathrm{2}} −\mathrm{xy}=\:\mathrm{3}\:? \\ $$
Question Number 83123 Answers: 0 Comments: 6
$$\int\frac{\left({x}^{\mathrm{2}} −\mathrm{1}\right)}{\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)\left({x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{2}\right)}\:{dx} \\ $$
Question Number 83115 Answers: 1 Comments: 1
$$\int\mathrm{cos}\:{xe}^{\mathrm{sin}\:{x}} {dx} \\ $$
Question Number 83110 Answers: 0 Comments: 10
$${bounded}\:{by}\:{the}\:{curve}\:{y}=\sqrt{\mathrm{4}-{x}}\:{y}=\mathrm{0}\:{y}=\mathrm{1} \\ $$
Question Number 83109 Answers: 0 Comments: 1
$$\int_{\mathrm{1}/\boldsymbol{{e}}} ^{{e}} \frac{\boldsymbol{{dt}}}{\boldsymbol{{t}}} \\ $$
Question Number 83108 Answers: 1 Comments: 0
$${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{cos}\left({nx}\right)}{{cos}^{{n}} \left({x}\right)}\:{dx}\:=\mathrm{2}^{{n}} \left[\frac{\pi}{\mathrm{8}}−\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{{sin}\left(\frac{{k}\pi}{\mathrm{4}}\right)}{\mathrm{2}{k}\left(\sqrt{\mathrm{2}}\right)^{{k}} }\right]\:{n}\in{N}^{\ast} \\ $$
Question Number 83104 Answers: 1 Comments: 0
$$\int\frac{{e}^{{x}} {dx}}{\mathrm{3}+{e}^{{x}} } \\ $$
Question Number 83102 Answers: 0 Comments: 3
Question Number 83096 Answers: 0 Comments: 1
$$\int\mathrm{tan}\:{x}^{\mathrm{4}} {dx} \\ $$
Question Number 83095 Answers: 0 Comments: 0
$$\int\mathrm{cosec}\:{x}^{\mathrm{5}} {dx} \\ $$
Question Number 83094 Answers: 0 Comments: 0
Question Number 83093 Answers: 0 Comments: 1
Question Number 83092 Answers: 0 Comments: 0
Question Number 83085 Answers: 1 Comments: 2
$$\left.\mathrm{1}\right)\:{find}\:\int\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{4}} } \\ $$
Question Number 83078 Answers: 0 Comments: 1
$$\mathrm{If}\:\:\:{I}_{\mathrm{1}} =\underset{{e}} {\overset{{e}^{\mathrm{2}} } {\int}}\:\frac{{dx}}{\mathrm{log}\:{x}}\:\:\mathrm{and}\:\:{I}_{\mathrm{2}} =\:\underset{\:\mathrm{1}} {\overset{\mathrm{2}} {\int}}\:\frac{{e}^{{x}} }{{x}}\:{dx},\:\mathrm{then} \\ $$
Pg 1299 Pg 1300 Pg 1301 Pg 1302 Pg 1303 Pg 1304 Pg 1305 Pg 1306 Pg 1307 Pg 1308
Terms of Service
Privacy Policy
Contact: info@tinkutara.com