Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1302

Question Number 83721    Answers: 3   Comments: 8

Question Number 83719    Answers: 2   Comments: 1

Question. ^(Show that ∫_0 ^(Π/2) ((cosx)/(3+cos^2 x))dx=(1/4)ln3)

$${Question}.\:\:\:\:\:\:\:\:\overset{{Show}\:\:{that}\:\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \frac{{cosx}}{\mathrm{3}+{cos}^{\mathrm{2}} {x}}{dx}=\frac{\mathrm{1}}{\mathrm{4}}{ln}\mathrm{3}} {\:} \\ $$

Question Number 83717    Answers: 0   Comments: 0

Question Number 83713    Answers: 1   Comments: 8

∫(dx/(√(x+(√(x+(√x)))))) pleas sir help me

$$\int\frac{{dx}}{\sqrt{{x}+\sqrt{{x}+\sqrt{{x}}}}}\:\:\:{pleas}\:{sir}\:{help}\:{me} \\ $$

Question Number 83710    Answers: 0   Comments: 1

lim_(x→∞) (((1+(√5))^x −(1−(√5))^x )/((1+(√5))^(x−1) −(1−(√5))^(x−1) )) = ?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)^{{x}} −\left(\mathrm{1}−\sqrt{\mathrm{5}}\right)^{{x}} }{\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)^{{x}−\mathrm{1}} −\left(\mathrm{1}−\sqrt{\mathrm{5}}\right)^{{x}−\mathrm{1}} }\:=\:? \\ $$

Question Number 83706    Answers: 1   Comments: 0

4^x + 10^x = 25^x x = ?

$$\mathrm{4}^{\mathrm{x}} \:+\:\mathrm{10}^{\mathrm{x}} \:=\:\mathrm{25}^{\mathrm{x}} \\ $$$$\mathrm{x}\:=\:? \\ $$

Question Number 83694    Answers: 2   Comments: 2

Question Number 83691    Answers: 1   Comments: 2

evaluate: ∫ (( dx)/(a sin x+b cos x))

$$\:\mathrm{evaluate}: \\ $$$$\:\:\:\int\:\frac{\:\boldsymbol{\mathrm{dx}}}{\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{sin}}\:\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{b}}\:\boldsymbol{\mathrm{cos}}\:\boldsymbol{\mathrm{x}}} \\ $$

Question Number 83690    Answers: 1   Comments: 1

lim_(x→∞ ) ((tan (((πx+1)/(2x+2))))/(x+1)) = ?

$$\underset{{x}\rightarrow\infty\:} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left(\frac{\pi{x}+\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}}\right)}{{x}+\mathrm{1}}\:=\:? \\ $$

Question Number 83680    Answers: 0   Comments: 4

Question Number 83675    Answers: 1   Comments: 2

evaluate: 2 ∫_0 ^( 2) ((√(x+1))/(x^2 +4))dx

$$ \\ $$$$\: \\ $$$$\:\:\mathrm{evaluate}: \\ $$$$\:\mathrm{2}\:\int_{\mathrm{0}} ^{\:\mathrm{2}} \:\frac{\sqrt{\mathrm{x}+\mathrm{1}}}{\mathrm{x}^{\mathrm{2}} +\mathrm{4}}\mathrm{dx} \\ $$$$\:\:\:\:\: \\ $$$$\:\: \\ $$

Question Number 83674    Answers: 1   Comments: 1

Question Number 83672    Answers: 2   Comments: 0

x^2 + (1/x^2 ) = 51 find x

$${x}^{\mathrm{2}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:=\:\mathrm{51}\: \\ $$$${find}\:{x}\: \\ $$

Question Number 83668    Answers: 1   Comments: 0

lim_(x→0) ((sin x cos x−x)/(x^2 sin (2x))) =

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}−{x}}{{x}^{\mathrm{2}} \:\mathrm{sin}\:\left(\mathrm{2}{x}\right)}\:=\: \\ $$

Question Number 83662    Answers: 1   Comments: 3

if f(x) = (√(x^2 −1)) and g(x) = (1/(√(x^2 −3))) find domain function (g • f)(x)

$$\mathrm{if}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}\:\:\:\mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{1}}{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{3}}} \\ $$$$\mathrm{find}\:\mathrm{domain}\:\mathrm{function}\: \\ $$$$\left(\mathrm{g}\:\bullet\:\mathrm{f}\right)\left(\mathrm{x}\right) \\ $$

Question Number 83654    Answers: 2   Comments: 1

solve this equation sin^2 x−sin^4 x=cos^2 x−cos^4 x

$$\mathrm{solve}\:\mathrm{this}\:\mathrm{equation}\: \\ $$$$\mathrm{sin}\:^{\mathrm{2}} {x}−\mathrm{sin}\:^{\mathrm{4}} {x}=\mathrm{cos}\:^{\mathrm{2}} {x}−\mathrm{cos}\:^{\mathrm{4}} {x} \\ $$

Question Number 83653    Answers: 2   Comments: 0

find range of function y= (4/((x^2 −4)))

$$\mathrm{find}\:\mathrm{range}\:\mathrm{of}\:\mathrm{function}\: \\ $$$$\mathrm{y}=\:\frac{\mathrm{4}}{\left({x}^{\mathrm{2}} −\mathrm{4}\right)} \\ $$

Question Number 83649    Answers: 1   Comments: 0

Question Number 83644    Answers: 0   Comments: 0

Question Number 83642    Answers: 0   Comments: 0

Find the surface area of the solid generated by the revolution of the cardioids r=a(1+cos θ) about the initial line.

$$ \\ $$$$\: \\ $$$$\mathfrak{Find}\:\mathfrak{the}\:\mathfrak{surface}\:\mathfrak{area}\:\mathfrak{of}\:\mathfrak{the}\:\mathfrak{solid}\:\mathfrak{generated} \\ $$$$\:\:\mathfrak{by}\:\mathfrak{the}\:\mathfrak{revolution}\:\mathfrak{of}\:\mathfrak{the}\:\mathfrak{cardioids}\:\mathfrak{r}=\mathfrak{a}\left(\mathrm{1}+\mathfrak{cos}\:\theta\right)\:\mathfrak{about}\:\mathfrak{the}\:\mathfrak{initial}\:\mathfrak{line}. \\ $$

Question Number 83637    Answers: 0   Comments: 0

Question Number 83639    Answers: 4   Comments: 0

Find the differential equations: (i) log((dy/dx))=ax+by (ii) x cos y dy=(x e^x log x +e^x )dx

$$ \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equations}}: \\ $$$$\:\:\:\left(\mathrm{i}\right)\:\mathrm{log}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)=\mathrm{ax}+\mathrm{by} \\ $$$$\:\:\:\left(\mathrm{ii}\right)\:\mathrm{x}\:\mathrm{cos}\:\mathrm{y}\:\mathrm{dy}=\left(\mathrm{x}\:\mathrm{e}^{\mathrm{x}} \mathrm{log}\:\mathrm{x}\:+\mathrm{e}^{\mathrm{x}} \right)\mathrm{dx} \\ $$$$ \\ $$

Question Number 83638    Answers: 1   Comments: 0

Question Number 83629    Answers: 1   Comments: 0

show that Σ_(n,k=0) ^∞ ((n! k!)/((n+k+2)!))=(π^2 /6)

$${show}\:{that} \\ $$$$\underset{{n},{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}!\:{k}!}{\left({n}+{k}+\mathrm{2}\right)!}=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$

Question Number 83619    Answers: 0   Comments: 0

Show that the differetial equation is a Sturm−Louville equation (x^(−1) y^1 )^1 +(4+λ)x^(−3) y=0, y(1)=0,y(ϱ^t )=0 Solve the equation to determine the eigenvalue and the corresponding eigen functions of the problem. Show also that the set of eigen function forms and orthogonal and orthonormal set. Thanks as usual.

$${Show}\:{that}\:{the}\:{differetial}\:{equation}\:{is}\:{a}\:{Sturm}−{Louville}\:{equation} \\ $$$$\left({x}^{−\mathrm{1}} {y}^{\mathrm{1}} \right)^{\mathrm{1}} +\left(\mathrm{4}+\lambda\right){x}^{−\mathrm{3}} {y}=\mathrm{0},\:\:{y}\left(\mathrm{1}\right)=\mathrm{0},{y}\left(\varrho^{{t}} \right)=\mathrm{0} \\ $$$${Solve}\:{the}\:{equation}\:{to}\:{determine}\:{the}\:{eigenvalue}\:{and}\:{the}\:{corresponding}\:{eigen}\:{functions}\:{of}\:{the}\:{problem}. \\ $$$${Show}\:{also}\:{that}\:{the}\:{set}\:{of}\:{eigen}\:{function}\:{forms}\:{and}\:{orthogonal}\:{and}\:{orthonormal}\:{set}. \\ $$$$ \\ $$$${Thanks}\:{as}\:{usual}. \\ $$

Question Number 83614    Answers: 1   Comments: 1

(3x−5)(3x+4)

$$\left(\mathrm{3}{x}−\mathrm{5}\right)\left(\mathrm{3}{x}+\mathrm{4}\right) \\ $$$$ \\ $$

  Pg 1297      Pg 1298      Pg 1299      Pg 1300      Pg 1301      Pg 1302      Pg 1303      Pg 1304      Pg 1305      Pg 1306   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com