Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1302
Question Number 84496 Answers: 1 Comments: 1
Question Number 84492 Answers: 0 Comments: 3
$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{3}}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left({x}−\frac{\pi}{\mathrm{3}}\right)}{\mathrm{1}−\mathrm{2cos}\:\left({x}\right)}\:=\: \\ $$
Question Number 84477 Answers: 2 Comments: 0
$$\left(\mathrm{ycos}\:\mathrm{x}+\mathrm{2xe}^{\mathrm{y}} \right)\mathrm{dx}+\left(\mathrm{sin}\:\mathrm{x}+\mathrm{x}^{\mathrm{2}} \mathrm{e}^{\mathrm{y}} −\mathrm{1}\right)\mathrm{dy}=\mathrm{0} \\ $$
Question Number 84469 Answers: 1 Comments: 0
$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$\mathrm{sin}\:\mathrm{3b}\:+\:\left(\mathrm{cos}\:\mathrm{b}+\mathrm{sin}\:\mathrm{b}\right)\left(\mathrm{1}−\mathrm{2sin}\:\mathrm{2b}\right) \\ $$$$=\:\mathrm{cos}\:\mathrm{3b} \\ $$
Question Number 84467 Answers: 0 Comments: 0
$$\int\:\mathrm{ln}\left(\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)\right)\:\mathrm{dx} \\ $$
Question Number 84461 Answers: 0 Comments: 2
$${p}^{\mathrm{2}} +\mathrm{3}{q}^{\mathrm{2}} =\mathrm{11907},\:{p},{q}\in\mathbb{Z},{find}\:{p\&q} \\ $$
Question Number 84460 Answers: 0 Comments: 2
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\mathrm{2}+\mathrm{x}\right)−\mathrm{sin}\:\left(\mathrm{2}−\mathrm{x}\right)}{\mathrm{x}} \\ $$
Question Number 84459 Answers: 1 Comments: 2
$$\begin{cases}{\mathrm{log}_{\mathrm{10}} \left(\mathrm{x}\right)+\frac{\mathrm{log}_{\mathrm{10}} \left(\mathrm{x}\right)+\mathrm{8log}_{\mathrm{10}} \left(\mathrm{y}\right)}{\mathrm{log}_{\mathrm{10}} ^{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{log}_{\mathrm{10}} ^{\mathrm{2}} \left(\mathrm{y}\right)}=\mathrm{3}}\\{\mathrm{log}_{\mathrm{10}} \left(\mathrm{y}\right)+\frac{\mathrm{8log}_{\mathrm{10}} \left(\mathrm{x}\right)−\mathrm{log}_{\mathrm{10}} \left(\mathrm{y}\right)}{\mathrm{log}_{\mathrm{10}} ^{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{log}_{\mathrm{10}} ^{\mathrm{2}} \left(\mathrm{y}\right)}=\mathrm{0}}\end{cases} \\ $$$$\mathrm{find}\:\mathrm{x}\:\&\:\mathrm{y} \\ $$
Question Number 84456 Answers: 0 Comments: 1
$${y}={ln}\sqrt{\frac{{a}+{sin}\left({x}\right)}{{b}−{sin}\left({x}\right)}} \\ $$$${if}\:\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} −{tan}^{\mathrm{2}} \left({x}\right)=\mathrm{1} \\ $$$${show}\:{that}\:{a}={b} \\ $$
Question Number 84448 Answers: 1 Comments: 0
$$\mathrm{5}^{\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{7}\mid\mathrm{x}\mid+\mathrm{10}}{\mathrm{x}^{\mathrm{2}} −\mathrm{6x}+\mathrm{9}}} \:<\:\mathrm{1} \\ $$
Question Number 84442 Answers: 1 Comments: 0
Question Number 84441 Answers: 1 Comments: 1
Question Number 84430 Answers: 0 Comments: 4
Question Number 84420 Answers: 1 Comments: 2
Question Number 84415 Answers: 3 Comments: 0
$$\int\:\sqrt{\mathrm{x}\:−\:\sqrt{\mathrm{4}\:−\:\mathrm{x}^{\mathrm{2}} }}\:\:\mathrm{dx} \\ $$
Question Number 84409 Answers: 3 Comments: 4
Question Number 84407 Answers: 1 Comments: 0
$$\mathrm{dy}+\mathrm{2xy}\:\mathrm{dx}\:=\:\mathrm{xe}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{y}^{\mathrm{3}} \:\mathrm{dx} \\ $$$$ \\ $$
Question Number 84404 Answers: 0 Comments: 1
$$\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{6}\right)...\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2020}\right)=\mathrm{1} \\ $$$$\mathrm{x}=? \\ $$
Question Number 84399 Answers: 0 Comments: 1
Question Number 84396 Answers: 0 Comments: 2
$$\int\frac{\mathrm{x}\sqrt{\mathrm{x}+\mathrm{1}}}{\mathrm{x}+\mathrm{2}}\mathrm{dx} \\ $$
Question Number 84395 Answers: 0 Comments: 0
$$\frac{\mathrm{x}\sqrt{\mathrm{x}+\mathrm{1}}}{\mathrm{x}+\mathrm{2}} \\ $$
Question Number 84394 Answers: 0 Comments: 2
$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution} \\ $$$$\frac{\mathrm{2x}}{\mathrm{x}−\mathrm{2}}\:\leqslant\:\mid\mathrm{x}−\mathrm{3}\mid\: \\ $$
Question Number 84393 Answers: 0 Comments: 0
$${if}\:{x}^{{x}} .{y}^{{y}} .{z}^{{z}} ={x}^{{y}} .{y}^{{z}} .{z}^{{x}} ={x}^{{z}} .{y}^{{x}} .{z}^{{y}} \:{such}\:{that}\:{x},\:{y}\:{and}\:{z}\: \\ $$$${are}\:{positive}\:{intigers}\:{greater}\:{than}\:\mathrm{1} \\ $$$$,{what}\:{is}\:{the}\:{value}\:{of}\:{xyz}\:{and}\:{x}+{y}+{z}\:? \\ $$
Question Number 84386 Answers: 1 Comments: 0
$$\int\sqrt{{x}−\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }}\:{dx} \\ $$
Question Number 84384 Answers: 0 Comments: 3
$$\left[{x}\right]^{{x}} =\mathrm{2}\sqrt{\mathrm{2}}\:\:,\:\forall{x}>\mathrm{0} \\ $$
Question Number 84382 Answers: 0 Comments: 0
$$\int\frac{{cos}\left(\mathrm{2}{x}\right)\:{sin}\left({x}\right)}{{cos}\left({x}\right)+{sin}\left(\mathrm{2}{x}\right)}\:{dx} \\ $$
Pg 1297 Pg 1298 Pg 1299 Pg 1300 Pg 1301 Pg 1302 Pg 1303 Pg 1304 Pg 1305 Pg 1306
Terms of Service
Privacy Policy
Contact: info@tinkutara.com