Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1302

Question Number 76245    Answers: 1   Comments: 0

The lines ax+2y+1=0, bx+3y+1=0 and cx+4y+1=0 are concurrent if a, b, c are in G.P. ??

$$\mathrm{The}\:\mathrm{lines}\:{ax}+\mathrm{2}{y}+\mathrm{1}=\mathrm{0},\:{bx}+\mathrm{3}{y}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{and}\:{cx}+\mathrm{4}{y}+\mathrm{1}=\mathrm{0}\:\mathrm{are}\:\mathrm{concurrent} \\ $$$$\mathrm{if}\:{a},\:{b},\:{c}\:\mathrm{are}\:\mathrm{in}\:\mathrm{G}.\mathrm{P}.\:?? \\ $$

Question Number 76153    Answers: 0   Comments: 0

Question Number 76151    Answers: 0   Comments: 6

lim_(x→∞) x^k e^(−4x) , k>0

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}^{{k}} {e}^{−\mathrm{4}{x}} ,\:{k}>\mathrm{0} \\ $$

Question Number 76146    Answers: 1   Comments: 5

Question Number 76143    Answers: 2   Comments: 1

Question Number 76127    Answers: 0   Comments: 0

Question Number 76126    Answers: 1   Comments: 9

Question Number 76112    Answers: 1   Comments: 0

If the sides of a triangle are consecutive integers and the maximum angle is twice the minimum, determine the sides of the triangle.

$${If}\:{the}\:{sides}\:{of}\:{a}\:{triangle}\:{are}\:{consecutive} \\ $$$${integers}\:{and}\:{the}\:{maximum}\:{angle} \\ $$$${is}\:{twice}\:{the}\:{minimum},\:{determine} \\ $$$${the}\:{sides}\:{of}\:{the}\:{triangle}. \\ $$

Question Number 76110    Answers: 1   Comments: 0

hello solve in R tanx>(√3) please explain me if possible.

$${hello}\:\mathrm{solve}\:\mathrm{in}\:\mathbb{R} \\ $$$$\mathrm{tan}{x}>\sqrt{\mathrm{3}} \\ $$$${please}\:{explain}\:{me}\:{if}\:{possible}. \\ $$

Question Number 76108    Answers: 1   Comments: 1

Question Number 76098    Answers: 2   Comments: 0

Question Number 76122    Answers: 4   Comments: 0

Question Number 76090    Answers: 1   Comments: 1

Question Number 76088    Answers: 0   Comments: 2

Question Number 76087    Answers: 1   Comments: 0

Question Number 76086    Answers: 0   Comments: 0

what is minimal expression for sin (π/k) cos (π/k), tan (π/k), cosec (π/k),sec (π/k)and cot (π/k)

$${what}\:{is}\:{minimal}\:{expression}\:{for}\:\mathrm{sin}\:\frac{\pi}{{k}}\: \\ $$$$\mathrm{cos}\:\frac{\pi}{{k}},\:\mathrm{tan}\:\frac{\pi}{{k}},\:\mathrm{cosec}\:\frac{\pi}{{k}},\mathrm{sec}\:\frac{\pi}{{k}}{and}\:\mathrm{cot}\:\frac{\pi}{{k}} \\ $$

Question Number 76075    Answers: 1   Comments: 0

how i evaluate sin(π/7)×sin(2π/7)×sin(3π/7) please help me

$$\mathrm{how}\:\mathrm{i}\:\mathrm{evaluate}\:\mathrm{sin}\left(\pi/\mathrm{7}\right)×\mathrm{sin}\left(\mathrm{2}\pi/\mathrm{7}\right)×\mathrm{sin}\left(\mathrm{3}\pi/\mathrm{7}\right)\: \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{me} \\ $$

Question Number 76061    Answers: 1   Comments: 0

What′s the minimum value of ((13a+13b+2c)/(2a+2b))+((24a−b+13c)/(2b+2c))+((−a+24b+13c)/(2a+2c))? (a,b,c are positive numbers.) I think nobody can solve this.

$$\mathrm{What}'\mathrm{s}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{13}{a}+\mathrm{13}{b}+\mathrm{2}{c}}{\mathrm{2}{a}+\mathrm{2}{b}}+\frac{\mathrm{24}{a}−{b}+\mathrm{13}{c}}{\mathrm{2}{b}+\mathrm{2}{c}}+\frac{−{a}+\mathrm{24}{b}+\mathrm{13}{c}}{\mathrm{2}{a}+\mathrm{2}{c}}? \\ $$$$\left({a},{b},{c}\:\mathrm{are}\:\mathrm{positive}\:\mathrm{numbers}.\right) \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{nobody}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{this}. \\ $$

Question Number 76053    Answers: 1   Comments: 2

how I calculate ∫(1/(x^8 +x^2 ))dx ?

$${how}\:{I}\:{calculate}\:\int\frac{\mathrm{1}}{{x}^{\mathrm{8}} +{x}^{\mathrm{2}} }{dx}\:? \\ $$

Question Number 76052    Answers: 0   Comments: 1

Question Number 76048    Answers: 2   Comments: 0

∫e^x^2 dx

$$\int{e}^{{x}^{\mathrm{2}} } {dx} \\ $$

Question Number 76038    Answers: 1   Comments: 0

Question Number 76037    Answers: 1   Comments: 0

Prove That sin 3°sin 39°sin 75°=sin 9°sin 24°sin 30°

$${Prove}\:{That} \\ $$$$\mathrm{sin}\:\mathrm{3}°\mathrm{sin}\:\mathrm{39}°\mathrm{sin}\:\mathrm{75}°=\mathrm{sin}\:\mathrm{9}°\mathrm{sin}\:\mathrm{24}°\mathrm{sin}\:\mathrm{30}° \\ $$

Question Number 76034    Answers: 1   Comments: 0

53^(log_x (7)) = (√x) x = ?

$$\: \\ $$$$\:\mathrm{53}^{\boldsymbol{\mathrm{log}}_{\boldsymbol{\mathrm{x}}} \left(\mathrm{7}\right)} \:=\:\sqrt{\boldsymbol{\mathrm{x}}} \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$$$\: \\ $$

Question Number 76032    Answers: 0   Comments: 0

Question Number 76015    Answers: 0   Comments: 0

  Pg 1297      Pg 1298      Pg 1299      Pg 1300      Pg 1301      Pg 1302      Pg 1303      Pg 1304      Pg 1305      Pg 1306   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com