Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1290

Question Number 85462    Answers: 0   Comments: 0

Question Number 85456    Answers: 0   Comments: 7

∫ (√(csc x )) dx?

$$\int\:\sqrt{\mathrm{csc}\:\mathrm{x}\:}\:\mathrm{dx}? \\ $$

Question Number 85447    Answers: 1   Comments: 5

Question Number 85442    Answers: 1   Comments: 1

Question Number 85441    Answers: 1   Comments: 0

∫ ((6x^4 −4)/(√(x^4 −2))) dx = ?

$$\int\:\frac{\mathrm{6x}^{\mathrm{4}} −\mathrm{4}}{\sqrt{\mathrm{x}^{\mathrm{4}} −\mathrm{2}}}\:\mathrm{dx}\:=\:? \\ $$

Question Number 85433    Answers: 1   Comments: 0

−log_(((x/6))) (((log_(10) (√(6−x)))/(log_(10) x))) > log_(10) (((∣x∣)/x))

$$−\mathrm{log}_{\left(\frac{\mathrm{x}}{\mathrm{6}}\right)} \left(\frac{\mathrm{log}_{\mathrm{10}} \sqrt{\mathrm{6}−\mathrm{x}}}{\mathrm{log}_{\mathrm{10}} \mathrm{x}}\right)\:>\:\mathrm{log}_{\mathrm{10}} \left(\frac{\mid\mathrm{x}\mid}{\mathrm{x}}\right) \\ $$

Question Number 85426    Answers: 1   Comments: 4

∫ _(π/4)^0 ((sin x+cos x)/(9+16sin 2x)) dx

$$\int\:_{\frac{\pi}{\mathrm{4}}} ^{\mathrm{0}} \:\frac{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}{\mathrm{9}+\mathrm{16sin}\:\mathrm{2}{x}}\:{dx} \\ $$

Question Number 85418    Answers: 0   Comments: 1

Find the term indepent of x in the expression of (2x−(1/(2x)))^9

$${Find}\:{the}\:{term}\:{indepent}\:{of}\:{x}\:{in}\:{the}\:{expression}\:{of}\:\left(\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{2}{x}}\right)^{\mathrm{9}} \\ $$

Question Number 85414    Answers: 1   Comments: 1

∫(1/(1+(√(cos(x))) )) dx

$$\int\frac{\mathrm{1}}{\mathrm{1}+\sqrt{{cos}\left({x}\right)}\:}\:{dx} \\ $$

Question Number 85413    Answers: 0   Comments: 0

Question Number 85412    Answers: 0   Comments: 1

Question Number 85395    Answers: 1   Comments: 1

Question Number 85813    Answers: 2   Comments: 1

∫ x^2 (√(1+x^2 )) dx ?

$$\int\:\mathrm{x}^{\mathrm{2}} \:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:? \\ $$

Question Number 85391    Answers: 1   Comments: 5

Question Number 85386    Answers: 1   Comments: 0

If cot x−cos x = n and m^2 −n^(2 ) = 4(√(mn)) prove that m = cot x + cos x

$$\mathrm{If}\:\mathrm{cot}\:{x}−\mathrm{cos}\:{x}\:=\:{n}\:{and}\: \\ $$$${m}^{\mathrm{2}} −{n}^{\mathrm{2}\:} =\:\mathrm{4}\sqrt{{mn}} \\ $$$${prove}\:{that}\:{m}\:=\:\mathrm{cot}\:{x}\:+\:\mathrm{cos}\:{x}\: \\ $$

Question Number 85384    Answers: 1   Comments: 1

Question Number 85383    Answers: 1   Comments: 0

∫(((sin(x))/(cos^(11) (x))))^(1/5) dx

$$\int\sqrt[{\mathrm{5}}]{\frac{{sin}\left({x}\right)}{{cos}^{\mathrm{11}} \left({x}\right)}}\:{dx} \\ $$

Question Number 85461    Answers: 0   Comments: 4

Question Number 85365    Answers: 3   Comments: 0

Question Number 85364    Answers: 0   Comments: 2

Question Number 85425    Answers: 2   Comments: 0

range of function y = ((∣x−1∣)/(x+3))

$${range}\:{of}\:{function} \\ $$$${y}\:=\:\frac{\mid{x}−\mathrm{1}\mid}{{x}+\mathrm{3}} \\ $$

Question Number 85362    Answers: 1   Comments: 0

∫((−4−u)/(u^2 +5u+6))du

$$\int\frac{−\mathrm{4}−\mathrm{u}}{\mathrm{u}^{\mathrm{2}} +\mathrm{5u}+\mathrm{6}}\mathrm{du} \\ $$

Question Number 85360    Answers: 1   Comments: 0

∫(e^((1−x)×e^x ) ×e^(∫xe^x dx) )dx

$$\int\left(\mathrm{e}^{\left(\mathrm{1}−\mathrm{x}\right)×\mathrm{e}^{\mathrm{x}} } ×\mathrm{e}^{\int\mathrm{xe}^{\mathrm{x}} \mathrm{dx}} \right)\mathrm{dx} \\ $$

Question Number 85358    Answers: 1   Comments: 0

((x ))^(1/(3 )) + (√x) = 12

$$\sqrt[{\mathrm{3}\:\:}]{\mathrm{x}\:}\:+\:\sqrt{\mathrm{x}}\:=\:\mathrm{12} \\ $$

Question Number 85356    Answers: 1   Comments: 0

(x^3 +y^3 ) = 3xy^2 (dy/dx)

$$\left(\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} \right)\:=\:\mathrm{3xy}^{\mathrm{2}} \:\frac{\mathrm{dy}}{\mathrm{dx}} \\ $$

Question Number 85355    Answers: 1   Comments: 4

  Pg 1285      Pg 1286      Pg 1287      Pg 1288      Pg 1289      Pg 1290      Pg 1291      Pg 1292      Pg 1293      Pg 1294   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com