Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1290
Question Number 82440 Answers: 0 Comments: 1
$${find}\:\int\:\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}{dx} \\ $$
Question Number 82439 Answers: 0 Comments: 1
$${calculate}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \sqrt{\mathrm{1}+{x}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 82442 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right){find}\:\int\:\frac{\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}}{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx} \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}}{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx} \\ $$
Question Number 82435 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{4}} ^{+\infty} \:\:\:\:\:\frac{{x}^{\mathrm{3}} }{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}−\mathrm{3}\right)^{\mathrm{5}} }{dx} \\ $$
Question Number 82434 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right){decompose}\:{inside}\:{C}\left({x}\right){and}\:{R}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)=\frac{\mathrm{2}{x}+\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} \left({x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{3}} ^{+\infty} {F}\left({x}\right){dx} \\ $$
Question Number 82433 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right){decompose}\:{inside}\:{C}\left({x}\right){and}\:{R}\left({x}\right)\:{F}=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 82431 Answers: 1 Comments: 5
Question Number 82426 Answers: 0 Comments: 2
$$\mathrm{Lim}\:\frac{\mathrm{e}^{\mathrm{x}} −\mathrm{1}−\mathrm{x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{2}} }\:=\:... \\ $$$$\mathrm{x}\rightarrow\mathrm{0} \\ $$
Question Number 82425 Answers: 0 Comments: 4
$$\mathrm{Lim}\:\left(\frac{\mathrm{1}}{\mathrm{ex}}\right)^{\mathrm{6x}} =..... \\ $$$$\mathrm{x}\rightarrow\mathrm{0} \\ $$
Question Number 82421 Answers: 1 Comments: 0
Question Number 82416 Answers: 0 Comments: 1
Question Number 82415 Answers: 0 Comments: 1
Question Number 82410 Answers: 1 Comments: 1
Question Number 82402 Answers: 0 Comments: 0
Question Number 82404 Answers: 1 Comments: 7
Question Number 82398 Answers: 0 Comments: 0
Question Number 82397 Answers: 0 Comments: 2
Question Number 82392 Answers: 0 Comments: 2
Question Number 82391 Answers: 0 Comments: 1
$$\int\:\mathrm{sin}\:{x}\:\mathrm{cos}\:\left(\mathrm{sin}\:{x}\right)\:{dx}\:? \\ $$
Question Number 82387 Answers: 0 Comments: 0
Question Number 82386 Answers: 0 Comments: 0
Question Number 82378 Answers: 1 Comments: 1
Question Number 82375 Answers: 2 Comments: 0
$${if}\:\:{x}+{y}=\mathrm{8}\:\:\:\:\:,,{x},{y}\in\mathbb{R}^{+} \\ $$$${prove}\:{that}\: \\ $$$$\left({x}+\frac{\mathrm{1}}{{y}}\right)^{\mathrm{2}} +\left({y}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} \geqslant\frac{\mathrm{289}}{\mathrm{8}} \\ $$
Question Number 82365 Answers: 0 Comments: 3
Question Number 82358 Answers: 0 Comments: 3
$$\mathrm{Show}\:\mathrm{that}:\:\:\:\:\:\:\:\mathrm{a}_{\mathrm{n}} \:\:=\:\:−\:\mathrm{r}\omega^{\mathrm{2}} \:,\:\:\:\mathrm{show}\:\mathrm{clearly}\:\mathrm{how}\:\mathrm{you}\:\mathrm{arrive} \\ $$$$\mathrm{at}\:\mathrm{your}\:\mathrm{result}. \\ $$
Question Number 82356 Answers: 0 Comments: 1
Pg 1285 Pg 1286 Pg 1287 Pg 1288 Pg 1289 Pg 1290 Pg 1291 Pg 1292 Pg 1293 Pg 1294
Terms of Service
Privacy Policy
Contact: info@tinkutara.com