Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1290

Question Number 86092    Answers: 1   Comments: 1

∫(1/(√(5−4x−2x^2 )))dx

$$\int\frac{\mathrm{1}}{\sqrt{\mathrm{5}−\mathrm{4}{x}−\mathrm{2}{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 86091    Answers: 1   Comments: 1

∫ ((sin x−cos x)/(√(sin 2x))) dx

$$\int\:\frac{\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}}{\sqrt{\mathrm{sin}\:\mathrm{2x}}}\:\mathrm{dx} \\ $$

Question Number 86088    Answers: 0   Comments: 5

Find the sum of the series below: 1+2+3−4−5−6+7+8+9−10−11−12+13+14+15...−3020

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{series}\:\mathrm{below}: \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{3}−\mathrm{4}−\mathrm{5}−\mathrm{6}+\mathrm{7}+\mathrm{8}+\mathrm{9}−\mathrm{10}−\mathrm{11}−\mathrm{12}+\mathrm{13}+\mathrm{14}+\mathrm{15}...−\mathrm{3020} \\ $$

Question Number 86085    Answers: 1   Comments: 4

If X^2 +Y^2 =10 XY=5 Find (X^2 −Y^2 )

$$\mathrm{If}\:\mathrm{X}^{\mathrm{2}} +\mathrm{Y}^{\mathrm{2}} =\mathrm{10} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{XY}=\mathrm{5} \\ $$$$\mathrm{Find}\:\left(\mathrm{X}^{\mathrm{2}} −\mathrm{Y}^{\mathrm{2}} \right) \\ $$

Question Number 86080    Answers: 1   Comments: 1

∫(dx/(√(5−4x−2x^2 )))

$$\int\frac{{dx}}{\sqrt{\mathrm{5}−\mathrm{4}{x}−\mathrm{2}{x}^{\mathrm{2}} }} \\ $$

Question Number 86042    Answers: 3   Comments: 0

solve: ⌊ (√x) ⌋=⌊(x/2)⌋

$${solve}:\:\:\lfloor\:\sqrt{{x}}\:\rfloor=\lfloor\frac{{x}}{\mathrm{2}}\rfloor \\ $$

Question Number 86041    Answers: 2   Comments: 0

1)if sin(θ−x)=k sin(θ+α) find tan(θ) and k then find θ in[0,2π] when k=(1/2) and α=π 2)if x=sin(t) and y=cos(2t) show that (d^2 y/dx^2 )+4=0

$$\left.\mathrm{1}\right){if}\: \\ $$$${sin}\left(\theta−{x}\right)={k}\:{sin}\left(\theta+\alpha\right) \\ $$$${find}\:{tan}\left(\theta\right)\:{and}\:{k} \\ $$$$ \\ $$$${then}\:{find}\:\theta\:{in}\left[\mathrm{0},\mathrm{2}\pi\right]\:\:{when}\:{k}=\frac{\mathrm{1}}{\mathrm{2}}\:{and}\:\alpha=\pi \\ $$$$ \\ $$$$\left.\mathrm{2}\right){if}\:{x}={sin}\left({t}\right)\:\:{and}\:\:{y}={cos}\left(\mathrm{2}{t}\right) \\ $$$${show}\:{that} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+\mathrm{4}=\mathrm{0} \\ $$

Question Number 86040    Answers: 3   Comments: 0

Question Number 86039    Answers: 0   Comments: 1

∫((2x^5 −x^3 −1)/(x^3 −4x))dx

$$\int\frac{\mathrm{2}{x}^{\mathrm{5}} −{x}^{\mathrm{3}} −\mathrm{1}}{{x}^{\mathrm{3}} −\mathrm{4}{x}}{dx} \\ $$

Question Number 86120    Answers: 1   Comments: 5

(dy/dx) + ((sin 2y)/x) = x^3 cos^2 y

$$\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\frac{\mathrm{sin}\:\mathrm{2y}}{\mathrm{x}}\:=\:\mathrm{x}^{\mathrm{3}} \:\mathrm{cos}\:^{\mathrm{2}} \:\mathrm{y} \\ $$

Question Number 86034    Answers: 2   Comments: 0

∫(dx/(√(×^2 +4)))

$$\int\frac{{dx}}{\sqrt{×^{\mathrm{2}} +\mathrm{4}}} \\ $$

Question Number 86031    Answers: 1   Comments: 6

lim_(x→0) (((√2)−(√(1+cos x)))/(sin^2 x))=

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2}}−\sqrt{\mathrm{1}+\mathrm{cos}\:{x}}}{\mathrm{sin}\:^{\mathrm{2}} {x}}= \\ $$

Question Number 86030    Answers: 0   Comments: 1

Tbe function f and g are defined by f(x)=2x−3 and g(x)=3x. Find (a) f^(−1) (x) (b) gf(x) (c) gf(2)

$${Tbe}\:{function}\:\boldsymbol{\mathrm{f}}\:{and}\:\boldsymbol{\mathrm{g}}\:{are}\:{defined}\:{by}\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=\mathrm{2}\boldsymbol{\mathrm{x}}−\mathrm{3}\:{and}\:\boldsymbol{\mathrm{g}}\left(\boldsymbol{\mathrm{x}}\right)=\mathrm{3}\boldsymbol{\mathrm{x}}. \\ $$$$\boldsymbol{\mathrm{F}}{ind}\:\left(\boldsymbol{\mathrm{a}}\right)\:\boldsymbol{\mathrm{f}}^{−\mathrm{1}} \left(\boldsymbol{\mathrm{x}}\right)\:\:\:\:\left(\boldsymbol{\mathrm{b}}\right)\:\boldsymbol{\mathrm{gf}}\left(\boldsymbol{\mathrm{x}}\right)\:\:\:\left(\boldsymbol{\mathrm{c}}\right)\:\boldsymbol{\mathrm{gf}}\left(\mathrm{2}\right) \\ $$

Question Number 86025    Answers: 0   Comments: 1

find the three last digits of 7^(2020) .

$${find}\:{the}\:{three}\:{last}\:{digits}\:{of}\:\:\mathrm{7}^{\mathrm{2020}} . \\ $$

Question Number 86024    Answers: 1   Comments: 1

last three digits of 951413^(314159) =?

$$\mathrm{last}\:\mathrm{three}\:\mathrm{digits}\:\mathrm{of} \\ $$$$\mathrm{951413}^{\mathrm{314159}} =? \\ $$

Question Number 86021    Answers: 0   Comments: 3

E is a vectorial plan in R with a base B=(i^→ ,j^→ ). f is an endomorphism of E defined ∀ u^→ =xi^→ +yj^→ by f(u^→ )=(−7x−12y)i^→ +(4x+7y)j^→ . 1) Determinate f(i^→ ) and f(j^→ ) then write the matrice of f in (i^→ ,j^→ )base.

$${E}\:{is}\:{a}\:{vectorial}\:{plan}\:{in}\:\mathbb{R}\:{with}\:{a}\:{base} \\ $$$${B}=\left(\overset{\rightarrow} {{i}},\overset{\rightarrow} {{j}}\right).\:{f}\:{is}\:{an}\:{endomorphism}\:{of}\:{E} \\ $$$${defined}\:\forall\:\overset{\rightarrow} {{u}}={x}\overset{\rightarrow} {{i}}+{y}\overset{\rightarrow} {{j}}\:{by}\:{f}\left(\overset{\rightarrow} {{u}}\right)=\left(−\mathrm{7}{x}−\mathrm{12}{y}\right)\overset{\rightarrow} {{i}}+\left(\mathrm{4}{x}+\mathrm{7}{y}\right)\overset{\rightarrow} {{j}}. \\ $$$$\left.\mathrm{1}\right)\:{Determinate}\:{f}\left(\overset{\rightarrow} {{i}}\right)\:{and}\:{f}\left(\overset{\rightarrow} {{j}}\right)\:\:{then}\: \\ $$$${write}\:{the}\:{matrice}\:{of}\:{f}\:{in}\:\left(\overset{\rightarrow} {{i}},\overset{\rightarrow} {{j}}\right){base}. \\ $$

Question Number 86018    Answers: 2   Comments: 0

Find the three last digits of 5^(9999) .

$${Find}\:{the}\:{three}\:{last}\:{digits}\:{of}\:\mathrm{5}^{\mathrm{9999}} . \\ $$

Question Number 86016    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((x^2 −3)/((x^2 +1)^7 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{2}} −\mathrm{3}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{7}} }{dx} \\ $$

Question Number 86015    Answers: 0   Comments: 0

calculate ∫_0 ^(+∞) (dx/((x^2 −x+2)^4 ))

$${calculate}\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{2}\right)^{\mathrm{4}} } \\ $$

Question Number 86013    Answers: 0   Comments: 1

calculate ∫_(1+(√2)) ^(+∞) (dx/((x−1)^3 (x+2)^3 ))

$${calculate}\:\:\int_{\mathrm{1}+\sqrt{\mathrm{2}}} ^{+\infty} \:\:\:\:\frac{{dx}}{\left({x}−\mathrm{1}\right)^{\mathrm{3}} \left({x}+\mathrm{2}\right)^{\mathrm{3}} } \\ $$

Question Number 86009    Answers: 1   Comments: 0

solve in R :[(x/2)]+[((2x)/3)]−x=0

$${solve}\:{in}\:{R}\::\left[\frac{{x}}{\mathrm{2}}\right]+\left[\frac{\mathrm{2}{x}}{\mathrm{3}}\right]−{x}=\mathrm{0} \\ $$

Question Number 86008    Answers: 0   Comments: 3

Question Number 86062    Answers: 2   Comments: 1

∫((√(x^2 −25))/x)dx

$$\int\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{25}}}{{x}}{dx} \\ $$

Question Number 86003    Answers: 1   Comments: 1

y ′′ + y′ = sin x cos 2x

$$\mathrm{y}\:''\:+\:\mathrm{y}'\:=\:\mathrm{sin}\:\mathrm{x}\:\mathrm{cos}\:\mathrm{2x} \\ $$

Question Number 86000    Answers: 1   Comments: 0

solve the equation x^(1/3) =4

$${solve}\:{the}\:{equation}\:\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{3}}} =\mathrm{4} \\ $$

Question Number 85999    Answers: 0   Comments: 5

∫_0 ^∞ ((sinx^2 )/(1+x^4 ))dx=0.4009 prove that

$$\int_{\mathrm{0}} ^{\infty} \frac{{sinx}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} }{dx}=\mathrm{0}.\mathrm{4009} \\ $$$${prove}\:{that} \\ $$

  Pg 1285      Pg 1286      Pg 1287      Pg 1288      Pg 1289      Pg 1290      Pg 1291      Pg 1292      Pg 1293      Pg 1294   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com