Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 129

Question Number 209484    Answers: 0   Comments: 0

∫_e^x ^e^2 ((1/(2+ln t)) )dt =?

$$\:\:\:\:\:\:\:\underset{\mathrm{e}^{\mathrm{x}} } {\overset{\mathrm{e}^{\mathrm{2}} } {\int}}\:\left(\frac{\mathrm{1}}{\mathrm{2}+\mathrm{ln}\:\mathrm{t}}\:\right)\mathrm{dt}\:=? \\ $$

Question Number 209474    Answers: 2   Comments: 1

Question Number 209465    Answers: 1   Comments: 0

Question Number 209460    Answers: 0   Comments: 0

Question Number 209458    Answers: 0   Comments: 3

Question Number 209456    Answers: 2   Comments: 0

Question Number 209455    Answers: 1   Comments: 0

Question Number 209453    Answers: 2   Comments: 1

Question Number 209452    Answers: 2   Comments: 0

Question Number 209450    Answers: 1   Comments: 0

Question Number 209436    Answers: 1   Comments: 2

{ ((x + y + z = 1)),((42x + 44y + 30z = 42)) :} (x,y,z)=(1,0,0) yes, but solution...

$$\begin{cases}{\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:=\:\mathrm{1}}\\{\mathrm{42x}\:+\:\mathrm{44y}\:+\:\mathrm{30z}\:=\:\mathrm{42}}\end{cases} \\ $$$$\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)=\left(\mathrm{1},\mathrm{0},\mathrm{0}\right)\:\mathrm{yes},\:\mathrm{but}\:\mathrm{solution}... \\ $$

Question Number 209434    Answers: 0   Comments: 5

Help

$${Help} \\ $$

Question Number 209433    Answers: 1   Comments: 0

Question Number 209432    Answers: 1   Comments: 0

A body is projected vertically upwards with a speed of 20m/s. Find the time in seconds when the body is 15m above it point of projection. g= 10m/s²

A body is projected vertically upwards with a speed of 20m/s. Find the time in seconds when the body is 15m above it point of projection. g= 10m/s²

Question Number 209430    Answers: 1   Comments: 0

Question Number 209415    Answers: 1   Comments: 1

Question Number 209404    Answers: 2   Comments: 0

Question Number 209398    Answers: 1   Comments: 0

Is it possible to determine the points A(x_1 , y_1 ) and B(x_2 , y_2 ) knowing that the distance between them is 2(√(29))?

$$\mathrm{Is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{determine}\:\mathrm{the}\:\mathrm{points}\:\mathrm{A}\left(\mathrm{x}_{\mathrm{1}} ,\:\mathrm{y}_{\mathrm{1}} \right)\:\mathrm{and} \\ $$$$\mathrm{B}\left(\mathrm{x}_{\mathrm{2}} ,\:\mathrm{y}_{\mathrm{2}} \right)\:\mathrm{knowing}\:\mathrm{that}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{them}\:\mathrm{is} \\ $$$$\mathrm{2}\sqrt{\mathrm{29}}? \\ $$

Question Number 209393    Answers: 1   Comments: 3

∫_0 ^(π/2) ((ln(tanx))/(1+tanx))dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{ln}\left({tanx}\right)}{\mathrm{1}+{tanx}}{dx} \\ $$

Question Number 209389    Answers: 0   Comments: 1

Cercle C de rayon R=5 petits cercles de meme rayon r Determiner Surface (ABCDEF)?

$$\mathrm{Cercle}\:\mathrm{C}\:\:\:\mathrm{de}\:\mathrm{rayon}\:\boldsymbol{\mathrm{R}}=\mathrm{5} \\ $$$$\mathrm{petits}\:\mathrm{cercles}\:\mathrm{de}\:\mathrm{meme}\:\mathrm{rayon}\:\boldsymbol{\mathrm{r}} \\ $$$$\mathrm{Determiner}\:\mathrm{Surface}\:\left(\boldsymbol{\mathrm{ABCDEF}}\right)? \\ $$

Question Number 209385    Answers: 1   Comments: 0

Question Number 209380    Answers: 0   Comments: 0

Question Number 209359    Answers: 3   Comments: 2

Question Number 209358    Answers: 1   Comments: 3

Question Number 209357    Answers: 3   Comments: 0

Evaluate : B_n = Π_(k=3) ^n (( k^( 2) −1)/(k^2 + k −6))= ?

$$ \\ $$$$\:\:\:\:\:\:{Evaluate}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\mathrm{B}_{{n}} =\:\underset{{k}=\mathrm{3}} {\overset{{n}} {\prod}}\:\frac{\:{k}^{\:\mathrm{2}} −\mathrm{1}}{{k}^{\mathrm{2}} \:+\:{k}\:−\mathrm{6}}=\:? \\ $$

Question Number 209356    Answers: 1   Comments: 0

Evaluate : lim_( n→∞) Π_(k=0) ^(n−1) cos (((2^( k) .π)/(2^( n) −1)) ) = ?

$$ \\ $$$$\:\:\:\:\:{Evaluate}\:: \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\mathrm{lim}_{\:{n}\rightarrow\infty} \:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\:{cos}\:\left(\frac{\mathrm{2}^{\:{k}} .\pi}{\mathrm{2}^{\:{n}} \:−\mathrm{1}}\:\right)\:\:=\:?\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

  Pg 124      Pg 125      Pg 126      Pg 127      Pg 128      Pg 129      Pg 130      Pg 131      Pg 132      Pg 133   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com