Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 128

Question Number 207582    Answers: 2   Comments: 0

∫_0 ^π ln(sinx)dx=−πln2 ∫_0 ^1 lnΓ(x)dx = ln(2π)

$$\int_{\mathrm{0}} ^{\pi} \:{ln}\left({sinx}\right){dx}=−\pi{ln}\mathrm{2} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\Gamma\left({x}\right){dx}\:=\:{ln}\left(\mathrm{2}\pi\right) \\ $$

Question Number 207563    Answers: 2   Comments: 0

z + ∣z∣ = 1 + (√3) i find: 𝛟 = ?

$$\mathrm{z}\:\:+\:\:\mid\mathrm{z}\mid\:\:=\:\:\mathrm{1}\:\:+\:\:\sqrt{\mathrm{3}}\:\boldsymbol{\mathrm{i}} \\ $$$$\mathrm{find}:\:\:\:\boldsymbol{\varphi}\:=\:? \\ $$

Question Number 207562    Answers: 0   Comments: 1

4 cos 50° − (1/(sin 20°)) = ?

$$\mathrm{4}\:\mathrm{cos}\:\mathrm{50}°\:−\:\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{20}°}\:\:=\:\:? \\ $$

Question Number 207561    Answers: 1   Comments: 0

4 sin^2 x + sin 2x = 2 find: x = ?

$$\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:\boldsymbol{\mathrm{x}}\:\:+\:\:\mathrm{sin}\:\mathrm{2}\boldsymbol{\mathrm{x}}\:\:=\:\:\mathrm{2} \\ $$$$\mathrm{find}:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$

Question Number 207559    Answers: 1   Comments: 0

log_x (x^2 + 7) ≤ 1

$$\mathrm{log}_{\boldsymbol{\mathrm{x}}} \:\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{7}\right)\:\:\leqslant\:\:\mathrm{1} \\ $$

Question Number 207558    Answers: 1   Comments: 0

(x − 2) lg (x/3) ≥ 0

$$\left(\mathrm{x}\:−\:\mathrm{2}\right)\:\mathrm{lg}\:\frac{\mathrm{x}}{\mathrm{3}}\:\:\geqslant\:\:\mathrm{0} \\ $$

Question Number 207551    Answers: 0   Comments: 0

Question Number 207547    Answers: 1   Comments: 1

lim→+oo ∫_1 ^(+oo) (x^n /(1+x^(n+2) ))dx =?

$${lim}\rightarrow+{oo}\:\int_{\mathrm{1}} ^{+{oo}} \:\frac{{x}^{{n}} }{\mathrm{1}+{x}^{{n}+\mathrm{2}} }{dx}\:=? \\ $$

Question Number 207546    Answers: 1   Comments: 0

The real roots of the equation x^2 +6x+c=0 differ by 2n, where n is a real non−zero. Show that n^2 =9−c Given that the roots also have opposite signs, find the set of possible values of n

$$\mathrm{The}\:\mathrm{real}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{x}^{\mathrm{2}} +\mathrm{6x}+\mathrm{c}=\mathrm{0} \\ $$$$\mathrm{differ}\:\mathrm{by}\:\mathrm{2n},\:\mathrm{where}\:\mathrm{n}\:\mathrm{is}\:\mathrm{a}\:\mathrm{real}\:\mathrm{non}−\mathrm{zero}. \\ $$$$\mathrm{Show}\:\mathrm{that}\:\mathrm{n}^{\mathrm{2}} =\mathrm{9}−\mathrm{c} \\ $$$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{also}\:\mathrm{have}\:\mathrm{opposite} \\ $$$$\mathrm{signs},\:\mathrm{find}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:\mathrm{n} \\ $$

Question Number 207576    Answers: 1   Comments: 2

Question Number 207543    Answers: 2   Comments: 1

Question Number 207565    Answers: 2   Comments: 0

find ∫_0 ^(π/2) (x^2 /(tan^2 x))dx

$${find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{x}^{\mathrm{2}} }{{tan}^{\mathrm{2}} {x}}{dx} \\ $$

Question Number 207533    Answers: 2   Comments: 1

Question Number 207528    Answers: 2   Comments: 0

Question Number 207519    Answers: 1   Comments: 0

Find: lim_(x→2^− ) (((x + 2)∙(x + 1))/(∣x + 2∣)) = ?

$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{2}^{−} } {\mathrm{lim}}\:\:\frac{\left(\mathrm{x}\:+\:\mathrm{2}\right)\centerdot\left(\mathrm{x}\:+\:\mathrm{1}\right)}{\mid\mathrm{x}\:+\:\mathrm{2}\mid}\:\:=\:\:? \\ $$

Question Number 207518    Answers: 1   Comments: 0

cosx cos3x = cos5x cos7x ⇒ x = ?

$$\mathrm{cos}\boldsymbol{\mathrm{x}}\:\mathrm{cos3}\boldsymbol{\mathrm{x}}\:\:=\:\:\mathrm{cos5}\boldsymbol{\mathrm{x}}\:\mathrm{cos7}\boldsymbol{\mathrm{x}} \\ $$$$\Rightarrow\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$

Question Number 207516    Answers: 2   Comments: 1

3(sinθ − cosθ)^4 + 6(sinθ + cosθ)^2 + 4(sin^6 θ + cos^6 θ) = ?

$$\mathrm{3}\left(\mathrm{sin}\theta\:−\:\mathrm{cos}\theta\right)^{\mathrm{4}} \:+\:\mathrm{6}\left(\mathrm{sin}\theta\:+\:\mathrm{cos}\theta\right)^{\mathrm{2}} \\ $$$$+\:\mathrm{4}\left(\mathrm{sin}^{\mathrm{6}} \theta\:+\:\mathrm{cos}^{\mathrm{6}} \theta\right)\:=\:? \\ $$

Question Number 207509    Answers: 1   Comments: 0

Question Number 207502    Answers: 2   Comments: 0

(6/(∣x − 4∣ − 3)) ≥ 1

$$\frac{\mathrm{6}}{\mid\boldsymbol{\mathrm{x}}\:−\:\mathrm{4}\mid\:−\:\mathrm{3}}\:\:\geqslant\:\:\mathrm{1} \\ $$

Question Number 207498    Answers: 1   Comments: 0

cos2x + sinx = tg(225°)∙(0,360°) sum of roots = ?

$$\mathrm{cos2}\boldsymbol{\mathrm{x}}\:+\:\mathrm{sin}\boldsymbol{\mathrm{x}}\:=\:\mathrm{tg}\left(\mathrm{225}°\right)\centerdot\left(\mathrm{0},\mathrm{360}°\right) \\ $$$$\mathrm{sum}\:\mathrm{of}\:\mathrm{roots}\:=\:? \\ $$

Question Number 207493    Answers: 2   Comments: 0

lim_(n→∞) (((n − 1)/(n + 2)))^(n+3) = ?

$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{n}\:−\:\mathrm{1}}{\mathrm{n}\:+\:\mathrm{2}}\right)^{\boldsymbol{\mathrm{n}}+\mathrm{3}} \:=\:\:? \\ $$

Question Number 207482    Answers: 1   Comments: 0

Question Number 207477    Answers: 0   Comments: 8

is there any generale form for this sequense { ((u_(n+1) =((au_n +b)/(cu_n +d)))),((u_m =k)) :} I need u_n in terms of n i have try to derrive it for a long time but i cant

$${is}\:{there}\:{any}\:{generale}\:{form}\:{for}\:{this}\:{sequense}\: \\ $$$$\begin{cases}{{u}_{{n}+\mathrm{1}} =\frac{{au}_{{n}} +{b}}{{cu}_{{n}} +{d}}}\\{{u}_{{m}} ={k}}\end{cases} \\ $$$${I}\:{need}\:{u}_{{n}} \:{in}\:{terms}\:{of}\:{n}\:{i}\:{have}\:{try}\:{to}\:{derrive}\:{it}\:{for}\:{a}\:{long}\:{time}\:{but}\:{i}\:{cant} \\ $$

Question Number 207724    Answers: 1   Comments: 0

2 tg^3 x − 2 tg^2 x + 6 tg x = 3 , [0 ; 2𝛑] Sum of roots = ?

$$\mathrm{2}\:\mathrm{tg}^{\mathrm{3}} \:\boldsymbol{\mathrm{x}}\:−\:\mathrm{2}\:\mathrm{tg}^{\mathrm{2}} \:\boldsymbol{\mathrm{x}}\:+\:\mathrm{6}\:\mathrm{tg}\:\boldsymbol{\mathrm{x}}\:=\:\mathrm{3}\:\:\:,\:\:\:\left[\mathrm{0}\:;\:\mathrm{2}\boldsymbol{\pi}\right] \\ $$$$\mathrm{Sum}\:\mathrm{of}\:\mathrm{roots}\:=\:? \\ $$

Question Number 207723    Answers: 0   Comments: 2

lim∫_0 ^∞ (1−e^(−ncos(x)) )dx

$$\mathrm{li}{m}\int_{\mathrm{0}} ^{\infty} \left(\mathrm{1}−{e}^{−{ncos}\left({x}\right)} \right){dx} \\ $$

Question Number 207466    Answers: 2   Comments: 0

  Pg 123      Pg 124      Pg 125      Pg 126      Pg 127      Pg 128      Pg 129      Pg 130      Pg 131      Pg 132   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com