Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 128

Question Number 210014    Answers: 2   Comments: 3

Question Number 210013    Answers: 1   Comments: 0

If f(x)= x^2 +ax+b. if f(1)= 3 and and one of the roots of the eqiation f(x)= 0 doubles the other, find the positive values of a and b.

$$\:{If}\:{f}\left({x}\right)=\:{x}^{\mathrm{2}} +{ax}+{b}.\:{if}\:{f}\left(\mathrm{1}\right)=\:\mathrm{3}\:{and}\: \\ $$$$\:{and}\:{one}\:{of}\:{the}\:{roots}\:{of}\:{the}\:{eqiation} \\ $$$$\:{f}\left({x}\right)=\:\mathrm{0}\:{doubles}\:{the}\:{other},\:{find}\:{the} \\ $$$$\:{positive}\:{values}\:{of}\:{a}\:{and}\:{b}. \\ $$

Question Number 210011    Answers: 0   Comments: 0

Find: ∫_0 ^( 1) ((ln (cos (((πx)/2))))/(x^2 + x)) dx = ?

$$\mathrm{Find}:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\:\frac{\mathrm{ln}\:\left(\mathrm{cos}\:\left(\frac{\pi\mathrm{x}}{\mathrm{2}}\right)\right)}{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}}\:\mathrm{dx}\:\:=\:\:? \\ $$

Question Number 209999    Answers: 3   Comments: 0

lim_(x→0) ((e^x −1)/( (√(1−cosx)))) =?

$$\:\:\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{lim}}}\:\frac{\boldsymbol{{e}}^{\boldsymbol{{x}}} −\mathrm{1}}{\:\sqrt{\mathrm{1}−\boldsymbol{{cosx}}}}\:=? \\ $$

Question Number 209991    Answers: 2   Comments: 0

((10^(log _3 (6)) . 15^(log _3 ((2/3))) )/(6^(log _3 ((2/3))) . 5^(log _3 ((4/3))) )) =?

$$\:\:\:\:\:\frac{\mathrm{10}^{\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{6}\right)} .\:\mathrm{15}^{\mathrm{log}\:_{\mathrm{3}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)} }{\mathrm{6}^{\mathrm{log}\:_{\mathrm{3}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)} .\:\mathrm{5}^{\mathrm{log}\:_{\mathrm{3}} \left(\frac{\mathrm{4}}{\mathrm{3}}\right)} }\:=?\: \\ $$

Question Number 209988    Answers: 0   Comments: 0

Question Number 209986    Answers: 1   Comments: 0

Solve ax^3 −bx(√x) +c=0 (a, b, c)∈R^3 and x∈R (the value of x for a=1, b=9,c=8)

$$\mathrm{Solve}\: \\ $$$$\:\boldsymbol{\mathrm{ax}}^{\mathrm{3}} −\boldsymbol{\mathrm{bx}}\sqrt{\boldsymbol{\mathrm{x}}}\:+\boldsymbol{\mathrm{c}}=\mathrm{0}\:\:\:\:\: \\ $$$$\:\left(\boldsymbol{\mathrm{a}},\:\boldsymbol{\mathrm{b}},\:\boldsymbol{\mathrm{c}}\right)\in\mathbb{R}^{\mathrm{3}} \:\:\:\:\mathrm{and}\:\boldsymbol{\mathrm{x}}\in\mathbb{R} \\ $$$$\left(\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{x}}\:\boldsymbol{{for}}\:\boldsymbol{{a}}=\mathrm{1},\:\:\boldsymbol{{b}}=\mathrm{9},\boldsymbol{{c}}=\mathrm{8}\right) \\ $$

Question Number 209980    Answers: 0   Comments: 7

determiner h ? CD=20 AB=30 h1=25

$$\mathrm{determiner}\:\mathrm{h}\:? \\ $$$$\boldsymbol{\mathrm{CD}}=\mathrm{20}\:\:\:\:\boldsymbol{\mathrm{AB}}=\mathrm{30} \\ $$$$\boldsymbol{\mathrm{h}}\mathrm{1}=\mathrm{25} \\ $$$$ \\ $$

Question Number 209976    Answers: 0   Comments: 1

Question Number 209975    Answers: 1   Comments: 0

Question Number 209974    Answers: 0   Comments: 0

Question Number 209972    Answers: 1   Comments: 0

Question Number 209965    Answers: 1   Comments: 0

Question Number 209960    Answers: 2   Comments: 1

Determiner Aire (ABH) AH⊥CE

$$\mathrm{Determiner}\:\:\mathrm{Aire}\:\left(\boldsymbol{\mathrm{ABH}}\right) \\ $$$$\:\:\:\mathrm{AH}\bot\mathrm{CE} \\ $$

Question Number 209956    Answers: 3   Comments: 0

Find the maximum value of 7cosA + 24sinA + 32

Find the maximum value of 7cosA + 24sinA + 32

Question Number 209944    Answers: 0   Comments: 1

Question Number 209937    Answers: 1   Comments: 0

Question Number 209932    Answers: 4   Comments: 0

Question Number 209929    Answers: 0   Comments: 0

Question Number 209926    Answers: 1   Comments: 3

lim_(n→∞) (1/(3n+1))+(1/(3n+2))+...+(1/(4n))

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{3}{n}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{3}{n}+\mathrm{2}}+...+\frac{\mathrm{1}}{\mathrm{4}{n}} \\ $$

Question Number 209924    Answers: 0   Comments: 0

If f(x)=(x!)∙(x!!)∙(x!!!) find (d/dx)(f(x))=?

$$\boldsymbol{{If}}\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\left(\boldsymbol{{x}}!\right)\centerdot\left(\boldsymbol{{x}}!!\right)\centerdot\left(\boldsymbol{{x}}!!!\right)\:\: \\ $$$$\boldsymbol{{find}}\:\:\frac{\boldsymbol{{d}}}{\boldsymbol{{dx}}}\left(\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\right)=? \\ $$

Question Number 209923    Answers: 1   Comments: 0

Solve: ∫((sin(x!))/(x!))dx

$$\boldsymbol{{Solve}}:\:\int\frac{\boldsymbol{{sin}}\left(\boldsymbol{{x}}!\right)}{\boldsymbol{{x}}!}\boldsymbol{{dx}} \\ $$

Question Number 209918    Answers: 1   Comments: 0

Find: ∫_0 ^( ∞) (({x}^([x]) )/([x] + 1)) dx = ? {x} → fractional part [x] → full part

$$\mathrm{Find}:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\left\{\mathrm{x}\right\}^{\left[\boldsymbol{\mathrm{x}}\right]} }{\left[\mathrm{x}\right]\:+\:\mathrm{1}}\:\mathrm{dx}\:=\:? \\ $$$$\left\{\mathrm{x}\right\}\:\rightarrow\:\mathrm{fractional}\:\mathrm{part} \\ $$$$\left[\mathrm{x}\right]\:\:\:\rightarrow\:\mathrm{full}\:\mathrm{part} \\ $$

Question Number 209913    Answers: 4   Comments: 1

Question Number 209911    Answers: 0   Comments: 4

Question Number 209892    Answers: 2   Comments: 0

find 40^(71) mod 437. thanks its 67 but how?

$${find}\:\:\mathrm{40}^{\mathrm{71}} {mod}\:\mathrm{437}.\:\:\:{thanks} \\ $$$${its}\:\mathrm{67}\:{but}\:{how}? \\ $$

  Pg 123      Pg 124      Pg 125      Pg 126      Pg 127      Pg 128      Pg 129      Pg 130      Pg 131      Pg 132   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com