Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 128

Question Number 209290    Answers: 0   Comments: 1

a^2 −a−^(1000) (√((1+8000a)))=1000 find a

$$\boldsymbol{\mathrm{a}}^{\mathrm{2}} −\boldsymbol{\mathrm{a}}−^{\mathrm{1000}} \sqrt{\left(\mathrm{1}+\mathrm{8000}\boldsymbol{\mathrm{a}}\right)}=\mathrm{1000} \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{a}} \\ $$

Question Number 209289    Answers: 1   Comments: 0

Question Number 209288    Answers: 1   Comments: 0

Question Number 209281    Answers: 2   Comments: 2

Find the value of r, if ^(10) C_r = ^(10) C_(2r + 1)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{r},\:\mathrm{if}\:\:\overset{\mathrm{10}} {\:}\mathrm{C}_{\mathrm{r}} \:\:=\:\:\overset{\mathrm{10}} {\:}\mathrm{C}_{\mathrm{2r}\:\:+\:\:\mathrm{1}} \\ $$

Question Number 209272    Answers: 2   Comments: 1

Question Number 209263    Answers: 0   Comments: 5

6 different letters were written to 6 different people and 6 different envelopes were prepared with the addresses of these people written on them. In how many different ways can you put a letter in each envelope without putting a letter written to this person in the envelope with the name of any person?

$$ \\ $$6 different letters were written to 6 different people and 6 different envelopes were prepared with the addresses of these people written on them. In how many different ways can you put a letter in each envelope without putting a letter written to this person in the envelope with the name of any person?

Question Number 210090    Answers: 0   Comments: 9

Question Number 209246    Answers: 1   Comments: 0

Find f(x)=∫^( x) _( 0) (dt/(t+e^(f(t)) ))

$$\mathrm{Find}\:\mathrm{f}\left(\mathrm{x}\right)=\underset{\:\mathrm{0}} {\int}^{\:\mathrm{x}} \frac{\mathrm{dt}}{\mathrm{t}+\mathrm{e}^{\mathrm{f}\left(\mathrm{t}\right)} } \\ $$

Question Number 209241    Answers: 2   Comments: 0

Question Number 209240    Answers: 1   Comments: 0

If x + ((49)/(x + 48)) = − 34 find (2x + 83)^3 + (1/((2x + 83)^3 ))

$${If}\:\:{x}\:\:+\:\:\frac{\mathrm{49}}{{x}\:+\:\mathrm{48}}\:\:=\:\:−\:\mathrm{34} \\ $$$${find}\:\:\left(\mathrm{2}{x}\:+\:\mathrm{83}\right)^{\mathrm{3}} \:+\:\frac{\mathrm{1}}{\left(\mathrm{2}{x}\:+\:\mathrm{83}\right)^{\mathrm{3}} } \\ $$

Question Number 209234    Answers: 2   Comments: 0

Arrange in descending order: (√5) − (√2), (√7) − (√5) , (√(13)) − (√(11)) , (√(19)) − (√(17))

$$\mathrm{Arrange}\:\mathrm{in}\:\mathrm{descending}\:\mathrm{order}: \\ $$$$\:\:\:\:\sqrt{\mathrm{5}}\:\:−\:\:\sqrt{\mathrm{2}},\:\:\:\:\:\sqrt{\mathrm{7}}\:\:−\:\:\sqrt{\mathrm{5}}\:,\:\:\:\sqrt{\mathrm{13}}\:\:−\:\:\sqrt{\mathrm{11}}\:,\:\:\:\sqrt{\mathrm{19}}\:\:−\:\:\sqrt{\mathrm{17}} \\ $$

Question Number 209232    Answers: 1   Comments: 0

u_0 = a, u_(n+1) = (√(u_n v_n )) v_0 = b ∈ ]0,1[ , v_(n+1) = (1/(2(u_n +v_n ))) • show that a≤u_n ≤u_(n+1) ≤v_n ≤v_(n+1) ≤b • show that v_n − u_n ≤ ((a+b)/2^n )

$${u}_{\mathrm{0}} \:=\:{a},\:{u}_{{n}+\mathrm{1}} \:=\:\sqrt{{u}_{{n}} {v}_{{n}} } \\ $$$$\left.{v}_{\mathrm{0}} \:=\:{b}\:\in\:\right]\mathrm{0},\mathrm{1}\left[\:,\:{v}_{{n}+\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{2}\left({u}_{{n}} +{v}_{{n}} \right)}\right. \\ $$$$\bullet\:{show}\:{that}\:{a}\leqslant{u}_{{n}} \leqslant{u}_{{n}+\mathrm{1}} \leqslant{v}_{{n}} \leqslant{v}_{{n}+\mathrm{1}} \leqslant{b} \\ $$$$\bullet\:{show}\:{that}\:{v}_{{n}} \:−\:{u}_{{n}} \:\leqslant\:\frac{{a}+{b}}{\mathrm{2}^{{n}} } \\ $$

Question Number 209229    Answers: 6   Comments: 2

Question Number 209228    Answers: 1   Comments: 0

Question Number 209223    Answers: 2   Comments: 0

Question Number 209221    Answers: 0   Comments: 0

Question Number 209220    Answers: 1   Comments: 0

Question Number 209211    Answers: 0   Comments: 1

Question Number 209206    Answers: 0   Comments: 2

2 YouTube channels I think you might find useful.

$$\mathrm{2}\:\mathrm{YouTube}\:\mathrm{channels}\:\mathrm{I}\:\mathrm{think}\:\mathrm{you}\:\mathrm{might} \\ $$$$\mathrm{find}\:\mathrm{useful}. \\ $$

Question Number 209193    Answers: 0   Comments: 1

A pin 6cm high is placed in front of a diverging lens of focal length 15cm, Calculate the position of the image formed

A pin 6cm high is placed in front of a diverging lens of focal length 15cm, Calculate the position of the image formed

Question Number 209187    Answers: 3   Comments: 0

:: α , β and γ are roots of the following equation . Find the value of ” F ” : Equation : x^( 3) −2x −1=0 F := α^( 5) + β^( 5) + γ^( 5)

$$ \\ $$$$\:\:\:::\:\:\:\alpha\:,\:\beta\:\:{and}\:\:\gamma\:\:{are}\:{roots}\:{of}\:{the} \\ $$$$\:\:\:\:\:{following}\:\:{equation}\:.\:{Find}\:{the} \\ $$$$\:\:\:\:\:{value}\:\:{of}\:\:\:''\:\:\mathrm{F}\:\:''\::\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{E}{quation}\::\:\:\:\:\:\:{x}^{\:\mathrm{3}} \:−\mathrm{2}{x}\:\:−\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{F}\::=\:\alpha^{\:\mathrm{5}} \:+\:\beta^{\:\mathrm{5}} \:+\:\gamma^{\:\mathrm{5}} \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$

Question Number 209185    Answers: 0   Comments: 0

Question Number 209217    Answers: 2   Comments: 0

calculate : I= ∫_(0 ) ^( ∞) (( tan^( −1) (x))/((1 + x^( 2) )^( 2) )) dx = ?

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{calculate}}\:: \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}=\:\int_{\mathrm{0}\:} ^{\:\infty} \frac{\:{tan}^{\:−\mathrm{1}} \left({x}\right)}{\left(\mathrm{1}\:+\:{x}^{\:\mathrm{2}} \right)^{\:\mathrm{2}} }\:{dx}\:=\:?\:\:\:\:\: \\ $$$$ \\ $$

Question Number 209167    Answers: 2   Comments: 0

please convert 2531_((5000) ) to base 5002. thanks.

$${please}\:{convert}\:\:\mathrm{2531}_{\left(\mathrm{5000}\right)\:} {to}\:\:{base}\:\mathrm{5002}.\:\:{thanks}.\:\: \\ $$

Question Number 209166    Answers: 1   Comments: 0

Question Number 209162    Answers: 2   Comments: 0

Cyclic quadrilateral ABCD is inscribed in circle. Point S is intersection of diagonals AC and BD (S is not center of the circle). If AB=BC=6 and BS=4, what is length of BD?

$$ \\ $$Cyclic quadrilateral ABCD is inscribed in circle. Point S is intersection of diagonals AC and BD (S is not center of the circle). If AB=BC=6 and BS=4, what is length of BD?

  Pg 123      Pg 124      Pg 125      Pg 126      Pg 127      Pg 128      Pg 129      Pg 130      Pg 131      Pg 132   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com