Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 128

Question Number 210935    Answers: 2   Comments: 0

at what times, if exist, are the angles betwen the hour hand, the minute hand and the second hand of a clock exactly 120°? assume that the hands of the clock move uniformly.

$${at}\:{what}\:{times},\:{if}\:{exist},\:{are}\:{the}\: \\ $$$${angles}\:{betwen}\:{the}\:{hour}\:{hand},\:{the} \\ $$$${minute}\:{hand}\:{and}\:{the}\:{second}\:{hand} \\ $$$${of}\:{a}\:{clock}\:{exactly}\:\mathrm{120}°? \\ $$$${assume}\:{that}\:{the}\:{hands}\:{of}\:{the}\:{clock} \\ $$$${move}\:{uniformly}. \\ $$

Question Number 210934    Answers: 2   Comments: 0

If ((x^2 + ax − 18)/(x^2 + 7x + 2b)) = ((x − c)/(x + 5)) Find a + b + c = ?

$$\mathrm{If}\:\:\:\frac{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{ax}\:−\:\mathrm{18}}{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{7x}\:+\:\mathrm{2b}}\:\:=\:\:\frac{\mathrm{x}\:−\:\mathrm{c}}{\mathrm{x}\:+\:\mathrm{5}} \\ $$$$\mathrm{Find}\:\:\:\boldsymbol{\mathrm{a}}\:+\:\boldsymbol{\mathrm{b}}\:+\:\boldsymbol{\mathrm{c}}\:=\:? \\ $$

Question Number 210933    Answers: 1   Comments: 0

I= ∫_0 ^( (π/2) ) (( sin( 25x ))/(sinx)) dx=?

$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\mathrm{I}=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}\:} \frac{\:{sin}\left(\:\mathrm{25}{x}\:\right)}{{sinx}}\:{dx}=? \\ $$$$ \\ $$$$ \\ $$

Question Number 210927    Answers: 0   Comments: 0

Question Number 210926    Answers: 0   Comments: 1

valeur de : tan^2 ((π/7))+tan^2 (((2π)/7))+tan^2 (((3π)/7)) = ???

$$\mathrm{valeur}\:\mathrm{de}\::\: \\ $$$$\mathrm{tan}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{7}}\right)+\mathrm{tan}^{\mathrm{2}} \left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)+\mathrm{tan}^{\mathrm{2}} \left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\:=\:??? \\ $$

Question Number 210922    Answers: 0   Comments: 0

Question Number 210920    Answers: 0   Comments: 0

Question Number 210919    Answers: 1   Comments: 0

Question Number 210918    Answers: 1   Comments: 0

Question Number 210917    Answers: 1   Comments: 0

Find the area intersected by three circles of radius 1, centered at the origin, at (1, 0) and (1, 1) respectively.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{intersected}\:\mathrm{by}\:\mathrm{three} \\ $$$$\mathrm{circles}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{1},\:\mathrm{centered}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{origin},\:\mathrm{at}\:\left(\mathrm{1},\:\mathrm{0}\right)\:\mathrm{and}\:\left(\mathrm{1},\:\mathrm{1}\right)\:\mathrm{respectively}. \\ $$

Question Number 210912    Answers: 2   Comments: 0

A uniform stick AB of length L and mass M is balanced horizontally on a knife edge 10.0cm from A when an object of mass 400g is suspended at A. When the knife edge is moved 5cm further, the object has to be moved to a point 9.00cm from A for the stick to balance. Represent the balance system with a suitable diagram, determine the mass and Length of the stick

A uniform stick AB of length L and mass M is balanced horizontally on a knife edge 10.0cm from A when an object of mass 400g is suspended at A. When the knife edge is moved 5cm further, the object has to be moved to a point 9.00cm from A for the stick to balance. Represent the balance system with a suitable diagram, determine the mass and Length of the stick

Question Number 210906    Answers: 1   Comments: 0

((19x − x^2 )/(x + 1)) ∙ (x + ((19 − x)/(x + 1))) = 78 find: x = ?

$$\frac{\mathrm{19x}\:−\:\mathrm{x}^{\mathrm{2}} }{\mathrm{x}\:+\:\mathrm{1}}\:\centerdot\:\left(\mathrm{x}\:+\:\frac{\mathrm{19}\:−\:\mathrm{x}}{\mathrm{x}\:+\:\mathrm{1}}\right)\:=\:\mathrm{78} \\ $$$$\mathrm{find}:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$

Question Number 210896    Answers: 0   Comments: 0

Σ_(n=1) ^∞ (H_n ^− /((2n+1)^q ))=??

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\overset{−} {{H}}_{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{{q}} }=?? \\ $$

Question Number 210895    Answers: 4   Comments: 0

Question Number 210875    Answers: 4   Comments: 0

Question Number 210874    Answers: 0   Comments: 0

Question Number 210873    Answers: 0   Comments: 0

Question Number 210871    Answers: 0   Comments: 1

7(x−2)((√(10 + x)) − ((7−x))^(1/3) )−15x + 6 = 0 x = ?

$$\mathrm{7}\left(\mathrm{x}−\mathrm{2}\right)\left(\sqrt{\mathrm{10}\:+\:\mathrm{x}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{7}−\mathrm{x}}\right)−\mathrm{15x}\:+\:\mathrm{6}\:=\:\mathrm{0} \\ $$$$\boldsymbol{\mathrm{x}}\:=\:? \\ $$

Question Number 210870    Answers: 0   Comments: 1

8x^2 − 13x + 11 = (2/x) + (1 + (3/x)) ((3x^2 −2))^(1/3) x = ?

$$\mathrm{8x}^{\mathrm{2}} \:−\:\mathrm{13x}\:+\:\mathrm{11}\:=\:\frac{\mathrm{2}}{\mathrm{x}}\:+\:\left(\mathrm{1}\:+\:\frac{\mathrm{3}}{\mathrm{x}}\right)\:\sqrt[{\mathrm{3}}]{\mathrm{3x}^{\mathrm{2}} −\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{x}}\:=\:? \\ $$

Question Number 210868    Answers: 1   Comments: 5

let p ,q be reals such that p>q>0 define the sequence {x_n } where x_1 = p+q and x_n = x_1 −((pq)/x_(n−1) ) for n≥2 for all n then x_n = ??

$$\mathrm{let}\:\mathrm{p}\:,\mathrm{q}\:\mathrm{be}\:\mathrm{reals}\:\mathrm{such}\:\mathrm{that}\:\mathrm{p}>\mathrm{q}>\mathrm{0}\:\mathrm{define} \\ $$$$\mathrm{the}\:\mathrm{sequence}\:\left\{\mathrm{x}_{\mathrm{n}} \right\}\:\mathrm{where}\:\mathrm{x}_{\mathrm{1}} =\:\mathrm{p}+\mathrm{q}\:\mathrm{and} \\ $$$$\mathrm{x}_{\mathrm{n}} \:=\:\mathrm{x}_{\mathrm{1}} −\frac{\mathrm{pq}}{\mathrm{x}_{\mathrm{n}−\mathrm{1}} }\:\mathrm{for}\:\mathrm{n}\geqslant\mathrm{2}\:\mathrm{for}\:\mathrm{all}\:\mathrm{n}\:\mathrm{then}\:\mathrm{x}_{\mathrm{n}} \:=\:?? \\ $$

Question Number 210858    Answers: 2   Comments: 0

Solve The Equation: (7x+1)(9x+1)(21x+1)(63x+1)= ((160)/(189))

$$\mathrm{Solve}\:\mathrm{The}\:\mathrm{Equation}: \\ $$$$\left(\mathrm{7x}+\mathrm{1}\right)\left(\mathrm{9x}+\mathrm{1}\right)\left(\mathrm{21x}+\mathrm{1}\right)\left(\mathrm{63x}+\mathrm{1}\right)=\:\frac{\mathrm{160}}{\mathrm{189}} \\ $$

Question Number 210855    Answers: 3   Comments: 0

Question Number 210843    Answers: 1   Comments: 0

Question Number 210842    Answers: 1   Comments: 0

Question Number 210851    Answers: 1   Comments: 1

Question Number 210840    Answers: 1   Comments: 0

Prove that if x, y are rational numbers satisfying the equation x^5 + y^5 = 2(x^2)(y^2) then 1 - xy is the square of rational number

$$ \\ $$Prove that if x, y are rational numbers satisfying the equation x^5 + y^5 = 2(x^2)(y^2) then 1 - xy is the square of rational number

  Pg 123      Pg 124      Pg 125      Pg 126      Pg 127      Pg 128      Pg 129      Pg 130      Pg 131      Pg 132   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com