Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1274
Question Number 85696 Answers: 0 Comments: 0
$$\mathrm{Montrer}\:\mathrm{que}: \\ $$$$\sqrt{\mathrm{5}}+\sqrt{\mathrm{30}}+\sqrt{\mathrm{50}}<\sqrt{\mathrm{10}}+\sqrt{\mathrm{20}}+\sqrt{\mathrm{60}} \\ $$$$\left\{\mathrm{niveau}\:\mathrm{second}\right) \\ $$
Question Number 85695 Answers: 0 Comments: 0
Question Number 85694 Answers: 0 Comments: 1
$$\mathrm{log}_{\left(\frac{{x}}{{x}−\mathrm{3}}\right)} \left(\mathrm{7}\right)\:<\:\mathrm{log}_{\left(\frac{{x}}{\mathrm{3}}\right)} \:\left(\mathrm{7}\right)\: \\ $$
Question Number 85677 Answers: 2 Comments: 3
$$\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\mathrm{sin}\:\left(\frac{\mathrm{21}{x}}{\mathrm{2}}\right)}{\mathrm{sin}\:\left(\frac{{x}}{\mathrm{2}}\right)}\:{dx}\: \\ $$
Question Number 85676 Answers: 0 Comments: 15
$$\int\underset{\mathrm{0}} {\overset{\infty} {\:}}\:\frac{{dx}}{\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{2}} } \\ $$$${let}\:{x}\:=\:\mathrm{tan}\:{t}\:\Rightarrow{dx}=\mathrm{sec}\:^{\mathrm{2}} {t}\:{dt} \\ $$$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{\mathrm{sec}\:^{\mathrm{2}} {t}\:{dt}}{\left(\mathrm{tan}\:{t}+\mathrm{sec}\:{t}\right)^{\mathrm{2}} }\:=\: \\ $$$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{{dt}}{\left(\mathrm{sin}\:{t}+\mathrm{1}\right)^{\mathrm{2}} }\:=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{{dt}}{\left(\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{2}}{t}+\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}{t}\right)^{\mathrm{4}} } \\ $$$$=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{{dt}}{\mathrm{4cos}^{\mathrm{4}} \:\left(\frac{\mathrm{1}}{\mathrm{2}}{t}−\frac{\pi}{\mathrm{4}}\right)} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\mathrm{sec}\:^{\mathrm{4}} \left(\frac{\mathrm{1}}{\mathrm{2}}{t}−\frac{\pi}{\mathrm{4}}\right)\:{dt} \\ $$$$\left[\:{let}\:\frac{\mathrm{1}}{\mathrm{2}}{t}−\frac{\pi}{\mathrm{4}}=\:{u}\right] \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\underset{−\frac{\pi}{\mathrm{4}}} {\overset{\mathrm{0}} {\int}}\:\mathrm{sec}\:^{\mathrm{4}} {u}\:×\mathrm{2}{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\underset{−\frac{\pi}{\mathrm{4}}} {\overset{\mathrm{0}} {\:}}\left(\mathrm{tan}\:^{\mathrm{2}} {u}+\mathrm{1}\right)\:{d}\left(\mathrm{tan}\:{u}\right) \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\:\left[\frac{\mathrm{1}}{\mathrm{3}}\mathrm{tan}\:^{\mathrm{3}} {u}\:+\:\mathrm{tan}\:{u}\:\right]_{−\frac{\pi}{\mathrm{4}}} ^{\mathrm{0}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\:\left[\:\mathrm{0}−\left(−\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{1}\right)\right]=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$ \\ $$
Question Number 85670 Answers: 0 Comments: 3
Question Number 85669 Answers: 1 Comments: 4
$$\int\:\frac{\sqrt{\mathrm{1}+{x}}}{\sqrt{\mathrm{1}−{x}}}\:{dx} \\ $$$$ \\ $$
Question Number 85668 Answers: 0 Comments: 2
$$\mathrm{z}\:=\:\mathrm{2}\:+\:\mathrm{i}\: \\ $$$$\mathrm{find}\:\mathrm{arg}\left(\mathrm{z}\right) \\ $$
Question Number 85667 Answers: 1 Comments: 0
$$\int\:\frac{{dx}}{\sqrt{\mathrm{1}−\mathrm{sin}\:\mathrm{2}{x}}}\: \\ $$
Question Number 85666 Answers: 0 Comments: 0
Question Number 85664 Answers: 0 Comments: 2
$$\boldsymbol{{S}\mathrm{how}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{group}}\:\boldsymbol{\mathrm{order}}\:\mathrm{100}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{not}}\:\boldsymbol{\mathrm{simple}} \\ $$
Question Number 85656 Answers: 0 Comments: 1
Question Number 85655 Answers: 0 Comments: 0
Question Number 85653 Answers: 0 Comments: 1
$${if}\:\:{f}\geqslant\mathrm{0}\:\:{and}\:\:\:\frac{{d}}{{dx}}\left({f}\left({x}\right)\right)^{\mathrm{2}} =\left({f}'\left({x}\right)\right)^{\mathrm{2}} \:{and}\:{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${find}\:{f}\left({x}\right)\:\:\: \\ $$$$ \\ $$$${if}\:{f}\left({x}\right)=\frac{\mathrm{4}{x}^{\mathrm{3}} }{{x}^{\mathrm{2}} +\mathrm{1}}\:\:{find}\:{f}^{\:−\mathrm{1}} \left({x}\right)\:\:\:{and}\:\left({f}^{\:−\mathrm{1}} \right)^{'} \left(\mathrm{2}\right) \\ $$
Question Number 85649 Answers: 1 Comments: 1
$$\mathrm{Proove}\:\mathrm{that}\:: \\ $$$$ \\ $$$$\frac{\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}}{\mathrm{2}}\:=\:\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$
Question Number 85648 Answers: 2 Comments: 0
$$\int\frac{\left(\mathrm{x}^{\mathrm{3}} −\mathrm{4}\right)}{\left(\mathrm{x}+\mathrm{1}\right)}\mathrm{dx} \\ $$
Question Number 85646 Answers: 0 Comments: 0
$${show}\:{that} \\ $$$$\int\frac{\mathrm{1}}{\left[{x}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)...\left({x}−{m}\right)\right]^{\mathrm{2}} }{dx}= \\ $$$$=\frac{\mathrm{1}}{\left({m}!\right)^{\mathrm{2}} }\underset{{n}=\mathrm{0}} {\overset{{m}} {\sum}}\frac{\begin{pmatrix}{{m}}\\{{n}}\end{pmatrix}^{\mathrm{2}} }{{n}−{x}}+\frac{\mathrm{2}}{\left({m}!\right)^{\mathrm{2}} }{ln}\mid\underset{{n}=\mathrm{0}} {\overset{{m}} {\prod}}\left({x}−{n}\right)^{\begin{pmatrix}{{m}}\\{{n}}\end{pmatrix}^{\mathrm{2}} \left({H}_{{m}−{n}} −{H}_{{n}} \right)} \mid+{c} \\ $$
Question Number 85641 Answers: 0 Comments: 2
$${calculate}\:{A}_{\lambda} =\int_{\mathrm{3}} ^{\infty} \:\:\frac{{dx}}{\left({x}+\lambda\right)^{\mathrm{3}} \left({x}−\mathrm{2}\right)^{\mathrm{4}} }\:\:\:\left(\lambda>\mathrm{0}\right) \\ $$
Question Number 85637 Answers: 1 Comments: 2
$$\int\:\frac{\mathrm{dx}}{\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}}\: \\ $$
Question Number 85630 Answers: 0 Comments: 1
$$\int_{\mathrm{0}} ^{\mathrm{2}\Pi} \:\:\:\frac{{dx}}{\sqrt{\mathrm{2}}−{cosx}}\:\: \\ $$
Question Number 85625 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{n}} −\left(\mathrm{sin}\:\mathrm{x}\right)^{\mathrm{n}} }{\left(\mathrm{sin}\:\mathrm{x}\right)^{\mathrm{n}+\mathrm{2}} } \\ $$
Question Number 85624 Answers: 0 Comments: 0
Question Number 85623 Answers: 1 Comments: 0
$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$\mathrm{sin}\:\mathrm{x}\:\mathrm{cos}\:\mathrm{2x}\:=\:\frac{\mathrm{1}}{\mathrm{4sin}\:\mathrm{4x}\:\mathrm{sec}\:\mathrm{x}} \\ $$
Question Number 85620 Answers: 1 Comments: 0
$${prove}\:{that} \\ $$$$ \\ $$$$\mathrm{cosh}\:\left({x}−{y}\right)=\mathrm{cosh}\:{x}\mathrm{cosh}\:{y}−\mathrm{sinh}\:{x}\mathrm{sinh}\:{y} \\ $$
Question Number 85606 Answers: 0 Comments: 7
Question Number 85603 Answers: 0 Comments: 0
$${prove}\:{the}\:{relation} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{li}_{\mathrm{5}} \left(\sqrt[{\mathrm{5}}]{{x}}\right)}{\sqrt[{\mathrm{5}}]{{x}}}{dx}=\frac{\mathrm{5}}{\mathrm{4}}\left(\frac{\mathrm{25}}{\mathrm{3072}}−\frac{\zeta\left(\mathrm{2}\right)}{\mathrm{2}^{\mathrm{6}} }+\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{2}^{\mathrm{4}} }−\frac{\zeta\left(\mathrm{4}\right)}{\mathrm{2}^{\mathrm{2}} }+\zeta\left(\mathrm{5}\right)\right) \\ $$
Pg 1269 Pg 1270 Pg 1271 Pg 1272 Pg 1273 Pg 1274 Pg 1275 Pg 1276 Pg 1277 Pg 1278
Terms of Service
Privacy Policy
Contact: info@tinkutara.com