Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1273
Question Number 86708 Answers: 1 Comments: 0
$$\int\mathrm{x}\:\sqrt{\sqrt{\mathrm{2}}\:\mathrm{x}−\sqrt{\mathrm{2x}^{\mathrm{2}} −\mathrm{1}}}\:\mathrm{dx}\: \\ $$
Question Number 86703 Answers: 3 Comments: 6
$${I}=\int\frac{\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{1}}{dx} \\ $$
Question Number 86701 Answers: 0 Comments: 1
$$\mathrm{find}\:\mathrm{solution}\: \\ $$$$\mathrm{4}^{\mathrm{sin}\:\mathrm{x}\:−\frac{\mathrm{1}}{\mathrm{4}}} \:−\:\frac{\mathrm{1}}{\mathrm{2}+\sqrt{\mathrm{2}}}\:.\mathrm{2}^{\mathrm{sin}\:\mathrm{x}} \:−\mathrm{1}\:=\:\mathrm{0}\: \\ $$$$\mathrm{in}\:\mathrm{x}\:\in\left[\:\mathrm{0},\mathrm{2}\pi\:\right]\: \\ $$
Question Number 86684 Answers: 2 Comments: 0
$$\mathrm{If}\:\left(\mathrm{1}+\mathrm{px}+\mathrm{qx}^{\mathrm{2}} \right)^{\mathrm{8}} \:=\:\mathrm{1}+\mathrm{8x}+\mathrm{52x}^{\mathrm{2}} +\mathrm{kx}^{\mathrm{3}} +... \\ $$$$\mathrm{find}\:\mathrm{p}\:,\:\mathrm{q}\:\mathrm{and}\:\mathrm{k}.\: \\ $$
Question Number 86675 Answers: 1 Comments: 7
$$\underset{{x}\rightarrow\infty} {{lim}}\sqrt[{{n}}]{\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+{x}^{{n}} \right)^{{n}} {dx}}=? \\ $$
Question Number 86672 Answers: 0 Comments: 0
$${show}\:{proofs}\:{by}\:{induction},{that} \\ $$$$\frac{{x}_{\mathrm{1}} +{x}_{\mathrm{2}} +....+{x}_{{n}} }{{n}}\geqslant\left({x}_{\mathrm{1}} {x}_{\mathrm{2}} ....{x}_{{n}} \right)^{\frac{\mathrm{1}}{{n}}} \\ $$$$\forall{n}=\mathrm{2}^{{k}} ,{k}>\mathrm{1}\:{and}\:\left({x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,{x}_{\mathrm{3}} ,.....{x}_{{n}} \right)>\mathrm{0}. \\ $$
Question Number 86671 Answers: 1 Comments: 0
$$\int{sin}\left({x}\right)\:{arcsin}\left({x}\right) \\ $$
Question Number 86668 Answers: 0 Comments: 1
$$\mathrm{what}\:\mathrm{is}\:\mathrm{P}\left(\mid\mathrm{x}\mid\:>\:\mathrm{1}\:\right)\:\mathrm{if}\:\mathrm{x}\:\mathrm{has}\:\mathrm{a}\:\mathrm{PDF}\:\mathrm{of} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:=\begin{cases}{\frac{\mathrm{1}}{\mathrm{4}}\:,\:\:−\mathrm{2}<\mathrm{x}<\mathrm{2}}\\{\mathrm{0}\:,\:\mathrm{elsewhere}}\end{cases} \\ $$
Question Number 86663 Answers: 1 Comments: 1
$$\mathrm{The}\:\mathrm{matrix}\:{A}\:\mathrm{satisfying}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\begin{bmatrix}{\mathrm{1}}&{\mathrm{3}}\\{\mathrm{0}}&{\mathrm{1}}\end{bmatrix}{A}\:=\:\begin{bmatrix}{\mathrm{1}}&{\:\:\:\:\mathrm{1}}\\{\mathrm{0}}&{−\mathrm{1}}\end{bmatrix}\:\mathrm{is} \\ $$
Question Number 86657 Answers: 1 Comments: 0
$$\mathrm{solve}\:\left(\mathrm{1}+\mathrm{x}^{\mathrm{3}} \right)\mathrm{dy}\:−\mathrm{x}^{\mathrm{2}} \:\mathrm{y}\:\mathrm{dx}=\mathrm{0} \\ $$$$\mathrm{y}\left(\mathrm{1}\right)\:=\:\mathrm{2} \\ $$
Question Number 86655 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow−\mathrm{1}^{+} } {\mathrm{lim}}\:\frac{\sqrt{\pi}\:−\sqrt{\mathrm{arc}\:\mathrm{cos}\:\mathrm{x}}}{\sqrt{\mathrm{x}+\mathrm{1}}} \\ $$
Question Number 86646 Answers: 0 Comments: 2
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 86643 Answers: 0 Comments: 2
$${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left(\mathrm{2}{ch}\left({x}\right)\right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$
Question Number 86640 Answers: 1 Comments: 0
$$\:\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equations}}: \\ $$$$\:\:\left(\boldsymbol{\mathrm{i}}\right).\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:\frac{\boldsymbol{\mathrm{d}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{dx}}^{\mathrm{2}} }\:−\:\boldsymbol{\mathrm{x}}\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}\:+\:\boldsymbol{\mathrm{y}}\:=\:\:\boldsymbol{\mathrm{log}}\:\boldsymbol{\mathrm{x}}. \\ $$$$\:\:\left(\boldsymbol{\mathrm{ii}}\right).\:\left(\boldsymbol{\mathrm{x}}+\mathrm{2}\right)^{\mathrm{2}} \:\frac{\boldsymbol{\mathrm{d}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{dx}}^{\mathrm{2}} }\:−\:\mathrm{4}\left(\boldsymbol{\mathrm{x}}+\mathrm{2}\right)\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}\:+\:\mathrm{6}\boldsymbol{\mathrm{y}}\:=\:\:\boldsymbol{\mathrm{x}}. \\ $$$$\: \\ $$
Question Number 86638 Answers: 1 Comments: 0
$${I}=\int\frac{{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{7}{x}−\mathrm{1}}{\left({x}−\mathrm{3}\right)^{\mathrm{3}} \left({x}−\mathrm{2}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 86634 Answers: 1 Comments: 0
Question Number 86627 Answers: 1 Comments: 3
Question Number 86626 Answers: 1 Comments: 2
$$\int\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{4}}\:\:\mathrm{dx} \\ $$$$\mathrm{answer}\:\mathrm{quick}\:\mathrm{pls} \\ $$
Question Number 86615 Answers: 1 Comments: 2
$$\int\sqrt{{tan}\:{x}\:}{dx} \\ $$
Question Number 86614 Answers: 1 Comments: 0
$${ABC}\:{is}\:{an}\:{isocel}\:{triangle}\:{such}\:{as} \\ $$$${AB}={AC}=\mathrm{3}\:\:{and}\:{BC}=\mathrm{4} \\ $$$$\alpha\:,\:\beta\:,\:{and}\:\gamma\:{are}\:{its}\:{angles}. \\ $$$${Show}\:{that}\:{cos}\left(\frac{\alpha+\beta}{\mathrm{2}}\right)={sin}\left(\frac{\gamma}{\mathrm{2}}\right) \\ $$$${Hi}\:{sirs}... \\ $$
Question Number 86613 Answers: 0 Comments: 6
$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{{ycos}\left({x}\right)+\mathrm{1}}{dxdy} \\ $$$$ \\ $$
Question Number 86611 Answers: 1 Comments: 0
$$\int_{\mathrm{1}} ^{{e}} \frac{\mathrm{ln}\:\mathrm{x}}{\mathrm{x}+\mathrm{1}}\mathrm{dx} \\ $$
Question Number 86610 Answers: 0 Comments: 4
Question Number 86603 Answers: 2 Comments: 2
$$\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\frac{{e}^{{x}} }{\left(\mathrm{1}+{x}\right)^{{n}} } \\ $$
Question Number 86602 Answers: 0 Comments: 0
Question Number 86598 Answers: 0 Comments: 1
$$\:\mathrm{write}\:\mathrm{out}\:\mathrm{the}\:\mathrm{general}\:\mathrm{summation}\:\mathrm{formula}\:\mathrm{for} \\ $$$$\:\mathrm{the}\:\mathrm{maclaurin}\:\mathrm{series}\:\mathrm{expansion}\:\mathrm{for}\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\left(\mathrm{cos}\:{x}\:+\:\mathrm{cosh}\:{x}\right) \\ $$
Pg 1268 Pg 1269 Pg 1270 Pg 1271 Pg 1272 Pg 1273 Pg 1274 Pg 1275 Pg 1276 Pg 1277
Terms of Service
Privacy Policy
Contact: info@tinkutara.com