Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1271
Question Number 75769 Answers: 0 Comments: 0
Question Number 75768 Answers: 1 Comments: 0
Question Number 75763 Answers: 2 Comments: 0
$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{it}\:\mathrm{in}\:\mathbb{R} \\ $$$$\mathrm{3cosx}−\sqrt{\mathrm{3}}\mathrm{sinx}+\sqrt{\mathrm{6}}=\mathrm{0} \\ $$
Question Number 75762 Answers: 0 Comments: 0
$${if}\:\:{y}\:{cos}\left({x}\right)+{x}\:{cos}\left({y}\right)\:=\:\pi \\ $$$$ \\ $$$${find}\:\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:\:\:,\:{x}=\mathrm{0} \\ $$
Question Number 75756 Answers: 0 Comments: 1
$$\underset{{x}=\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{1}}\right) \\ $$
Question Number 75753 Answers: 1 Comments: 0
$$\left(\frac{\left(\mathrm{x}^{\mathrm{1}/\mathrm{3}} +\mathrm{x}^{−\mathrm{1}/\mathrm{3}} \right)^{\mathrm{2}} −\mathrm{2}}{\left(\mathrm{x}^{\mathrm{1}/\mathrm{3}} +\mathrm{x}^{−\mathrm{1}/\mathrm{3}} \right)^{\mathrm{2}} +\mathrm{2}}−\mathrm{x}\right)^{\mathrm{3}/\mathrm{4}} \\ $$
Question Number 75751 Answers: 0 Comments: 0
Question Number 75750 Answers: 0 Comments: 2
Question Number 75743 Answers: 2 Comments: 3
Question Number 75742 Answers: 0 Comments: 0
$$\mathrm{plz}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{my}\:\mathrm{handsome}\:\mathrm{guys}\:\mathrm{and}\:\mathrm{sisters}... \\ $$$$\mathrm{complex}\:\mathrm{integral}\:\int_{−\infty} ^{+\infty} \:\frac{{e}^{\boldsymbol{{i}}{t}} }{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\mathrm{d}{t} \\ $$
Question Number 75741 Answers: 0 Comments: 0
$$\mathrm{solve}\:\mathrm{complex}\:\mathrm{integral} \\ $$$$\int_{−\infty} ^{+\infty} \:\frac{{e}^{\boldsymbol{{i}}{t}} }{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\mathrm{d}{t}=???? \\ $$$$\mathrm{plz}.......\mathrm{help}\:\mathrm{me}...\mathrm{T}\frown\mathrm{T}\:\:\: \\ $$$$\mathrm{my}\:\mathrm{handsome}\:\mathrm{brothers}\:\mathrm{and}\:\mathrm{sisters}... \\ $$
Question Number 75736 Answers: 0 Comments: 0
$${let}\:{A}_{{n}} =\:\begin{pmatrix}{\frac{\pi}{{n}}\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{−\mathrm{1}\:\:\:\:\:\:\:\:\frac{\pi}{{n}}}\end{pmatrix}\:\:\:\:{with}\:{n}\:{integr}\:{natural}\:{not}\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{A}_{{n}} ^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} ^{{n}} \\ $$
Question Number 75735 Answers: 0 Comments: 4
$${let}\:{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{3}\:\:\:\:\:\:\:\:\:\:−\mathrm{1}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{e}^{{A}} \:{and}\:{e}^{−{A}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{cosA}\:{and}\:{sinA} \\ $$
Question Number 75734 Answers: 0 Comments: 0
$${calculate}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+{xtan}\theta\right){d}\theta\:\:{with}\:{x}\:>\mathrm{0} \\ $$
Question Number 75739 Answers: 1 Comments: 1
Question Number 75701 Answers: 2 Comments: 1
$$\mathrm{please}\:\mathrm{tell}\:\mathrm{me}\::\left(\infty\right)^{\mathrm{0}\:} \mathrm{is}\:\mathrm{not}\:\mathrm{defined}\:? \\ $$
Question Number 75694 Answers: 3 Comments: 0
$$\boldsymbol{{prove}}\:\boldsymbol{{that}}\: \\ $$$$\underset{\boldsymbol{{x}}\rightarrow\infty} {\boldsymbol{{lim}}}\:\boldsymbol{{x}}^{\frac{\mathrm{1}}{\boldsymbol{{x}}}} \:=\mathrm{1} \\ $$
Question Number 75721 Answers: 0 Comments: 1
$$\mathrm{solve}\:\mathrm{this}\:\mathrm{complex}\:\mathrm{integral}\int_{−\infty} ^{+\infty} \:\frac{{e}^{\boldsymbol{{i}}{t}} }{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\mathrm{d}{t} \\ $$
Question Number 75684 Answers: 2 Comments: 2
Question Number 75681 Answers: 1 Comments: 8
Question Number 75669 Answers: 3 Comments: 3
Question Number 75662 Answers: 0 Comments: 0
Question Number 75661 Answers: 1 Comments: 0
Question Number 75660 Answers: 2 Comments: 1
$${find}\:{all}\:{solutions}\:\left({if}\:{exist}\right)\:{of} \\ $$$${x}^{\mathrm{2}} +\mathrm{5}{y}^{\mathrm{2}} =\mathrm{2016} \\ $$$${with}\:{x},{y}\:\in\:\mathbb{N}. \\ $$
Question Number 75656 Answers: 0 Comments: 5
Question Number 75655 Answers: 1 Comments: 0
$${if}\:{z}\:\in\:\mathbb{C} \\ $$$${is}\:\mathrm{sin}^{\mathrm{2}} \:{z}+\mathrm{cos}^{\mathrm{2}} \:{z}=\mathrm{1}\:{also}\:{valid}? \\ $$
Pg 1266 Pg 1267 Pg 1268 Pg 1269 Pg 1270 Pg 1271 Pg 1272 Pg 1273 Pg 1274 Pg 1275
Terms of Service
Privacy Policy
Contact: info@tinkutara.com