Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1265
Question Number 87624 Answers: 0 Comments: 1
$$\mathrm{find}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{w}\:+ \\ $$$$\mathrm{sec}\:^{\mathrm{2}} \mathrm{w}\: \\ $$
Question Number 87614 Answers: 1 Comments: 0
$$\begin{cases}{\left({x}+{y}\right).\mathrm{2}^{{y}−\mathrm{2}{x}} =\mathrm{6}.\mathrm{25}}\\{\left({x}+{y}\right)^{\frac{\mathrm{1}}{\mathrm{2}{x}−{y}}} =\mathrm{5}}\end{cases} \\ $$
Question Number 87613 Answers: 1 Comments: 1
Question Number 87630 Answers: 0 Comments: 1
Question Number 87598 Answers: 0 Comments: 1
Question Number 87586 Answers: 1 Comments: 0
$${l}.{c}.{m}\:{of}\:{two}\:{numbers}\:{is}\:{p}^{\mathrm{2}} {q}^{\mathrm{4}} {r}^{\mathrm{4}} \:{p}\:{q}\:{r}\:{are} \\ $$$${primes}.{find}\:{the}\:{possible}\:{no}.\:{of}\:{pairs} \\ $$
Question Number 87585 Answers: 1 Comments: 0
Question Number 87581 Answers: 2 Comments: 1
Question Number 110350 Answers: 2 Comments: 0
$$\:\:\:\frac{{bob}}{{hans}} \\ $$$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left({x}−\frac{\mathrm{9}}{{x}}\right)}{\mathrm{tan}\:\left({x}−\mathrm{3}\right)\mathrm{cos}\:\left(\frac{\mathrm{9}}{{x}}−{x}\right)}= \\ $$$$\left(\mathrm{2}\right)\left({x}\:\mathrm{tan}^{−\mathrm{1}} \left({y}\right)\right){dx}\:+\left(\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}\left(\mathrm{1}+{y}^{\mathrm{2}} \right)}\right).\:{dy}\:=\mathrm{0}\: \\ $$
Question Number 87563 Answers: 1 Comments: 5
$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two}\:\mathrm{numbers} \\ $$$$\frac{\mathrm{1}+\mathrm{2}+\mathrm{2}^{\mathrm{2}} +\mathrm{2}^{\mathrm{3}} +...+\mathrm{2}^{\mathrm{n}−\mathrm{1}} }{\mathrm{1}+\mathrm{2}+\mathrm{2}^{\mathrm{2}} +\mathrm{2}^{\mathrm{3}} +...+\mathrm{2}^{\mathrm{n}} }\:\mathrm{and}\: \\ $$$$\frac{\mathrm{1}+\mathrm{3}+\mathrm{3}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} +...+\mathrm{3}^{\mathrm{n}−\mathrm{1}} }{\mathrm{1}+\mathrm{3}+\mathrm{3}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} +...+\mathrm{3}^{\mathrm{n}} }\:\mathrm{is}\:\mathrm{greater}? \\ $$
Question Number 87561 Answers: 0 Comments: 3
$$\mathrm{for}\:\mathrm{x},\mathrm{y}\:\in\mathbb{R}\:,\: \\ $$$$\mathrm{x}\:,\mathrm{y}\:>\:\mathrm{0}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\begin{cases}{\mathrm{x}^{\mathrm{3}} \mathrm{y}−\mathrm{xy}^{\mathrm{3}} \:=\:\mathrm{24}}\\{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{10}\:}\end{cases} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}+\mathrm{y}? \\ $$$$\left(\mathrm{a}\right)\:\mathrm{6}\:\:\:\left(\mathrm{b}\right)\:\mathrm{5}\:\:\:\left(\mathrm{c}\right)\:\mathrm{4}\:\:\:\left(\mathrm{d}\right)\:\mathrm{3}\sqrt{\mathrm{2}}\:\:\left(\mathrm{e}\right)\:\mathrm{2} \\ $$
Question Number 87556 Answers: 1 Comments: 1
Question Number 87553 Answers: 1 Comments: 0
Question Number 87550 Answers: 0 Comments: 2
$$\frac{\mathrm{1}}{\mathrm{2e}^{−\mathrm{x}} −\mathrm{1}}\:>\:\frac{\mathrm{2}}{\mathrm{e}^{−\mathrm{x}} −\mathrm{2}} \\ $$
Question Number 87543 Answers: 0 Comments: 0
Question Number 87540 Answers: 1 Comments: 1
Question Number 87538 Answers: 0 Comments: 7
Question Number 87537 Answers: 0 Comments: 0
Question Number 87536 Answers: 1 Comments: 0
$${solve}\: \\ $$$$\mid\mathrm{2}{x}−\mathrm{1}\mid=\mathrm{3}\lfloor{x}\rfloor+\mathrm{2}\left\{{x}\right\} \\ $$$$ \\ $$
Question Number 87535 Answers: 0 Comments: 0
$${let}\:{U}_{{n}} =\left\{{z}\in{C}\:/{z}^{{n}} =\mathrm{1}\right\} \\ $$$${calculate}\:\sum_{{k}=\mathrm{0}\:{and}\:{z}\in{U}_{{n}} } ^{{p}−\mathrm{1}} \:{z}^{{k}} \\ $$
Question Number 87534 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{arctan}\left({sinx}\right)}{{sinx}}{dx} \\ $$
Question Number 87533 Answers: 3 Comments: 2
Question Number 87532 Answers: 0 Comments: 2
$$\:\left(\mathrm{1}\right).\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{general}}\:\boldsymbol{\mathrm{solution}}: \\ $$$$\:\:\:\boldsymbol{\mathrm{y}}=\:\boldsymbol{\mathrm{px}}\:+\boldsymbol{\mathrm{p}}^{\boldsymbol{\mathrm{n}}} \\ $$$$\:\left(\mathrm{2}\right).\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}}: \\ $$$$\:\:\left(\boldsymbol{\mathrm{x}}+\mathrm{1}\right)^{\mathrm{2}} \:\frac{\boldsymbol{\mathrm{d}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{dx}}^{\mathrm{2}} }\:+\:\left(\boldsymbol{\mathrm{x}}+\mathrm{1}\right)\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}=\:\left(\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{3}\right)\left(\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{4}\right). \\ $$$$\:\: \\ $$
Question Number 87530 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{e}^{−{n}\left[{x}\right]} {sin}\left(\frac{\pi{x}}{{n}}\right){dx}\:\:{nnatural}\:{and}\:{n}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{2}\right){determine}\:{nature}\:{of}\:\Sigma\:{U}_{{n}} \\ $$
Question Number 87527 Answers: 0 Comments: 1
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{3}{x}\right)}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx} \\ $$
Question Number 87526 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left[{nx}\right]} \:{dx} \\ $$
Pg 1260 Pg 1261 Pg 1262 Pg 1263 Pg 1264 Pg 1265 Pg 1266 Pg 1267 Pg 1268 Pg 1269
Terms of Service
Privacy Policy
Contact: info@tinkutara.com