Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1265

Question Number 87624    Answers: 0   Comments: 1

find minimum value of cos^2 w + sec^2 w

$$\mathrm{find}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{w}\:+ \\ $$$$\mathrm{sec}\:^{\mathrm{2}} \mathrm{w}\: \\ $$

Question Number 87614    Answers: 1   Comments: 0

{ (((x+y).2^(y−2x) =6.25)),(((x+y)^(1/(2x−y)) =5)) :}

$$\begin{cases}{\left({x}+{y}\right).\mathrm{2}^{{y}−\mathrm{2}{x}} =\mathrm{6}.\mathrm{25}}\\{\left({x}+{y}\right)^{\frac{\mathrm{1}}{\mathrm{2}{x}−{y}}} =\mathrm{5}}\end{cases} \\ $$

Question Number 87613    Answers: 1   Comments: 1

Question Number 87630    Answers: 0   Comments: 1

Question Number 87598    Answers: 0   Comments: 1

Question Number 87586    Answers: 1   Comments: 0

l.c.m of two numbers is p^2 q^4 r^4 p q r are primes.find the possible no. of pairs

$${l}.{c}.{m}\:{of}\:{two}\:{numbers}\:{is}\:{p}^{\mathrm{2}} {q}^{\mathrm{4}} {r}^{\mathrm{4}} \:{p}\:{q}\:{r}\:{are} \\ $$$${primes}.{find}\:{the}\:{possible}\:{no}.\:{of}\:{pairs} \\ $$

Question Number 87585    Answers: 1   Comments: 0

Question Number 87581    Answers: 2   Comments: 1

Question Number 110350    Answers: 2   Comments: 0

((bob)/(hans)) (1)lim_(x→3) ((sin (x−(9/x)))/(tan (x−3)cos ((9/x)−x)))= (2)(x tan^(−1) (y))dx +( (x^2 /(2(1+y^2 )))). dy =0

$$\:\:\:\frac{{bob}}{{hans}} \\ $$$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left({x}−\frac{\mathrm{9}}{{x}}\right)}{\mathrm{tan}\:\left({x}−\mathrm{3}\right)\mathrm{cos}\:\left(\frac{\mathrm{9}}{{x}}−{x}\right)}= \\ $$$$\left(\mathrm{2}\right)\left({x}\:\mathrm{tan}^{−\mathrm{1}} \left({y}\right)\right){dx}\:+\left(\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}\left(\mathrm{1}+{y}^{\mathrm{2}} \right)}\right).\:{dy}\:=\mathrm{0}\: \\ $$

Question Number 87563    Answers: 1   Comments: 5

Which of the two numbers ((1+2+2^2 +2^3 +...+2^(n−1) )/(1+2+2^2 +2^3 +...+2^n )) and ((1+3+3^2 +3^3 +...+3^(n−1) )/(1+3+3^2 +3^3 +...+3^n )) is greater?

$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two}\:\mathrm{numbers} \\ $$$$\frac{\mathrm{1}+\mathrm{2}+\mathrm{2}^{\mathrm{2}} +\mathrm{2}^{\mathrm{3}} +...+\mathrm{2}^{\mathrm{n}−\mathrm{1}} }{\mathrm{1}+\mathrm{2}+\mathrm{2}^{\mathrm{2}} +\mathrm{2}^{\mathrm{3}} +...+\mathrm{2}^{\mathrm{n}} }\:\mathrm{and}\: \\ $$$$\frac{\mathrm{1}+\mathrm{3}+\mathrm{3}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} +...+\mathrm{3}^{\mathrm{n}−\mathrm{1}} }{\mathrm{1}+\mathrm{3}+\mathrm{3}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} +...+\mathrm{3}^{\mathrm{n}} }\:\mathrm{is}\:\mathrm{greater}? \\ $$

Question Number 87561    Answers: 0   Comments: 3

for x,y ∈R , x ,y > 0 satisfy the equation { ((x^3 y−xy^3 = 24)),((x^2 +y^2 = 10 )) :} find the possible value of x+y? (a) 6 (b) 5 (c) 4 (d) 3(√2) (e) 2

$$\mathrm{for}\:\mathrm{x},\mathrm{y}\:\in\mathbb{R}\:,\: \\ $$$$\mathrm{x}\:,\mathrm{y}\:>\:\mathrm{0}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\begin{cases}{\mathrm{x}^{\mathrm{3}} \mathrm{y}−\mathrm{xy}^{\mathrm{3}} \:=\:\mathrm{24}}\\{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{10}\:}\end{cases} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}+\mathrm{y}? \\ $$$$\left(\mathrm{a}\right)\:\mathrm{6}\:\:\:\left(\mathrm{b}\right)\:\mathrm{5}\:\:\:\left(\mathrm{c}\right)\:\mathrm{4}\:\:\:\left(\mathrm{d}\right)\:\mathrm{3}\sqrt{\mathrm{2}}\:\:\left(\mathrm{e}\right)\:\mathrm{2} \\ $$

Question Number 87556    Answers: 1   Comments: 1

Question Number 87553    Answers: 1   Comments: 0

Question Number 87550    Answers: 0   Comments: 2

(1/(2e^(−x) −1)) > (2/(e^(−x) −2))

$$\frac{\mathrm{1}}{\mathrm{2e}^{−\mathrm{x}} −\mathrm{1}}\:>\:\frac{\mathrm{2}}{\mathrm{e}^{−\mathrm{x}} −\mathrm{2}} \\ $$

Question Number 87543    Answers: 0   Comments: 0

Question Number 87540    Answers: 1   Comments: 1

Question Number 87538    Answers: 0   Comments: 7

Question Number 87537    Answers: 0   Comments: 0

Question Number 87536    Answers: 1   Comments: 0

solve ∣2x−1∣=3⌊x⌋+2{x}

$${solve}\: \\ $$$$\mid\mathrm{2}{x}−\mathrm{1}\mid=\mathrm{3}\lfloor{x}\rfloor+\mathrm{2}\left\{{x}\right\} \\ $$$$ \\ $$

Question Number 87535    Answers: 0   Comments: 0

let U_n ={z∈C /z^n =1} calculate Σ_(k=0 and z∈U_n ) ^(p−1) z^k

$${let}\:{U}_{{n}} =\left\{{z}\in{C}\:/{z}^{{n}} =\mathrm{1}\right\} \\ $$$${calculate}\:\sum_{{k}=\mathrm{0}\:{and}\:{z}\in{U}_{{n}} } ^{{p}−\mathrm{1}} \:{z}^{{k}} \\ $$

Question Number 87534    Answers: 0   Comments: 1

calculate ∫_0 ^(π/4) ((arctan(sinx))/(sinx))dx

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{arctan}\left({sinx}\right)}{{sinx}}{dx} \\ $$

Question Number 87533    Answers: 3   Comments: 2

Question Number 87532    Answers: 0   Comments: 2

(1).Find the general solution: y= px +p^n (2).Solve the differential equation: (x+1)^2 (d^2 y/dx^2 ) + (x+1)(dy/dx)= (2x+3)(2x+4).

$$\:\left(\mathrm{1}\right).\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{general}}\:\boldsymbol{\mathrm{solution}}: \\ $$$$\:\:\:\boldsymbol{\mathrm{y}}=\:\boldsymbol{\mathrm{px}}\:+\boldsymbol{\mathrm{p}}^{\boldsymbol{\mathrm{n}}} \\ $$$$\:\left(\mathrm{2}\right).\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}}: \\ $$$$\:\:\left(\boldsymbol{\mathrm{x}}+\mathrm{1}\right)^{\mathrm{2}} \:\frac{\boldsymbol{\mathrm{d}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{dx}}^{\mathrm{2}} }\:+\:\left(\boldsymbol{\mathrm{x}}+\mathrm{1}\right)\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}=\:\left(\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{3}\right)\left(\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{4}\right). \\ $$$$\:\: \\ $$

Question Number 87530    Answers: 0   Comments: 1

1) calculate U_n =∫_0 ^∞ e^(−n[x]) sin(((πx)/n))dx nnatural and n≥1 2)determine nature of Σ U_n

$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{e}^{−{n}\left[{x}\right]} {sin}\left(\frac{\pi{x}}{{n}}\right){dx}\:\:{nnatural}\:{and}\:{n}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{2}\right){determine}\:{nature}\:{of}\:\Sigma\:{U}_{{n}} \\ $$

Question Number 87527    Answers: 0   Comments: 1

find ∫_0 ^∞ ((arctan(3x))/(x^2 +x+1))dx

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{3}{x}\right)}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx} \\ $$

Question Number 87526    Answers: 0   Comments: 1

calculate ∫_0 ^∞ e^(−[nx]) dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left[{nx}\right]} \:{dx} \\ $$

  Pg 1260      Pg 1261      Pg 1262      Pg 1263      Pg 1264      Pg 1265      Pg 1266      Pg 1267      Pg 1268      Pg 1269   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com