show that
∫e^(sin(x)) dx=
−Σ_(n=0) ^∞ (1/(n!))[ cos(x)∗(sin(x))^(n+1) ∗[(sin(x))^2 ]^((((−n)/2)−(1/2))) ∗ 2F_1 [(1/2),((1−n)/2);(3/2);(cos(x))^2 ] ]+c
notice\2F_1 is special function called hypergeometric function
Given that forces F_(1 ) and F_2 position vectors r_(1 ) and r_2
F_1 = (2i + 3j)N r_1 = i + 2j
F_2 = (αi−7j) N r_2 = 3i + 4j
Given that these system of forces form a couple
find the value of α.