Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1262

Question Number 85875    Answers: 1   Comments: 0

∫((1/(7[1−(1/7)e^x ]))) dx

$$\int\left(\frac{\mathrm{1}}{\mathrm{7}\left[\mathrm{1}−\frac{\mathrm{1}}{\mathrm{7}}\mathrm{e}^{\mathrm{x}} \right]}\right)\:\mathrm{dx} \\ $$

Question Number 85872    Answers: 1   Comments: 1

∫cos^(2020) x dx = ?

$$\int\mathrm{cos}^{\mathrm{2020}} \mathrm{x}\:\mathrm{dx}\:=\:? \\ $$

Question Number 85871    Answers: 0   Comments: 3

Question Number 85868    Answers: 0   Comments: 6

if f(x)=⌊x^2 ⌋ and A=lim_(x→0) (f(x)−f(−x)) and B=f(x)+f(−x) when x=0 find A and B

$${if}\:{f}\left({x}\right)=\lfloor{x}^{\mathrm{2}} \rfloor\:\: \\ $$$${and}\:{A}=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\left({f}\left({x}\right)−{f}\left(−{x}\right)\right) \\ $$$${and}\:{B}={f}\left({x}\right)+{f}\left(−{x}\right)\:\:{when}\:{x}=\mathrm{0} \\ $$$$ \\ $$$${find}\:{A}\:{and}\:{B} \\ $$

Question Number 85866    Answers: 2   Comments: 1

Question Number 85865    Answers: 1   Comments: 0

prove that curl(r^n c^→ ×r^→ )=(n+2)r^n c^→ −nr^(n−2) (r^→ .c^→ ) . where c is the constant vector.

$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$\mathrm{curl}\left(\mathrm{r}^{\mathrm{n}} \overset{\rightarrow} {\mathrm{c}}×\overset{\rightarrow} {\mathrm{r}}\right)=\left(\mathrm{n}+\mathrm{2}\right)\mathrm{r}^{\mathrm{n}} \overset{\rightarrow} {\mathrm{c}}−\mathrm{nr}^{\mathrm{n}−\mathrm{2}} \left(\overset{\rightarrow} {\mathrm{r}}.\overset{\rightarrow} {\mathrm{c}}\right)\:\:. \\ $$$$\mathrm{where}\:\mathrm{c}\:\mathrm{is}\:\mathrm{the}\:\mathrm{constant}\:\mathrm{vector}. \\ $$

Question Number 85864    Answers: 1   Comments: 0

simplify the expression (√(6+2(√(8(√3)−10)))) − (√(7−(√3))) in the form (√((√a)+b)) ?

$${simplify}\:{the}\:{expression} \\ $$$$\sqrt{\mathrm{6}+\mathrm{2}\sqrt{\mathrm{8}\sqrt{\mathrm{3}}−\mathrm{10}}}\:−\:\sqrt{\mathrm{7}−\sqrt{\mathrm{3}}}\:\:{in} \\ $$$${the}\:{form}\:\sqrt{\sqrt{{a}}+{b}}\:? \\ $$

Question Number 85859    Answers: 2   Comments: 0

Is the Var(aX+b) = a^2 Var(X) + b?

$$\:\mathrm{Is}\:\mathrm{the}\:\mathrm{Var}\left(\mathrm{aX}+\mathrm{b}\right)\:=\:\mathrm{a}^{\mathrm{2}} \:\mathrm{Var}\left(\mathrm{X}\right)\:+\:\mathrm{b}? \\ $$

Question Number 85858    Answers: 0   Comments: 0

Is a matrix A^T A always positive definite?

$$\mathrm{Is}\:\mathrm{a}\:\mathrm{matrix} \\ $$$$\mathrm{A}^{\mathrm{T}} \mathrm{A}\:\mathrm{always}\:\mathrm{positive}\:\mathrm{definite}? \\ $$

Question Number 85857    Answers: 1   Comments: 0

Question Number 85854    Answers: 0   Comments: 2

If x,y,z ∈ R satisfy the equation x^4 + y^4 + z^4 = 4xyz −1 find minimum value of x + y + z

$$\mathrm{If}\:\mathrm{x},\mathrm{y},\mathrm{z}\:\in\:\mathbb{R}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{y}^{\mathrm{4}} \:+\:\mathrm{z}^{\mathrm{4}} \:=\:\mathrm{4xyz}\:−\mathrm{1}\: \\ $$$$\mathrm{find}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\: \\ $$

Question Number 85846    Answers: 0   Comments: 2

∫_( 0) ^(50π) ∣ cos x ∣dx =

$$\underset{\:\mathrm{0}} {\overset{\mathrm{50}\pi} {\int}}\:\mid\:\mathrm{cos}\:{x}\:\mid{dx}\:= \\ $$

Question Number 85845    Answers: 2   Comments: 0

solve tanh (x) = (1/(cosh (x)))

$$\mathrm{solve}\:\mathrm{tanh}\:\left(\mathrm{x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{cosh}\:\left(\mathrm{x}\right)} \\ $$

Question Number 85839    Answers: 1   Comments: 1

∫x×(1/(√(x^2 −1)))dx

$$\int\mathrm{x}×\frac{\mathrm{1}}{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}}\mathrm{dx} \\ $$

Question Number 85835    Answers: 1   Comments: 0

xydy=(y^2 +x)dx

$$\mathrm{xydy}=\left(\mathrm{y}^{\mathrm{2}} +\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 85834    Answers: 1   Comments: 0

2y^′ −(x/y)=((xy)/(x^2 −1))

$$\mathrm{2y}^{'} −\frac{\mathrm{x}}{\mathrm{y}}=\frac{\mathrm{xy}}{\mathrm{x}^{\mathrm{2}} −\mathrm{1}} \\ $$

Question Number 85832    Answers: 1   Comments: 1

(x+x^(−1) )^2 +(x^2 +x^(−2) )^2 +(x^3 +x^(−3) )^2 + ... + (x^(10) +x^(−10) )^2 =

$$\left(\mathrm{x}+\mathrm{x}^{−\mathrm{1}} \right)^{\mathrm{2}} +\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}^{−\mathrm{2}} \right)^{\mathrm{2}} +\left(\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{−\mathrm{3}} \right)^{\mathrm{2}} \\ $$$$+\:...\:+\:\left(\mathrm{x}^{\mathrm{10}} +\mathrm{x}^{−\mathrm{10}} \right)^{\mathrm{2}} \:=\: \\ $$

Question Number 85828    Answers: 1   Comments: 0

∫(1/(x+cot(x))) dx

$$\int\frac{\mathrm{1}}{{x}+{cot}\left({x}\right)}\:{dx} \\ $$

Question Number 85826    Answers: 1   Comments: 2

^x log (xy).^y log (xy) +^x log (x−y).^y log (x−y)=0 find x+y

$$\:^{\mathrm{x}} \mathrm{log}\:\left(\mathrm{xy}\right).\:^{\mathrm{y}} \mathrm{log}\:\left(\mathrm{xy}\right)\:+\:^{\mathrm{x}} \mathrm{log}\:\left(\mathrm{x}−\mathrm{y}\right).^{\mathrm{y}} \mathrm{log}\:\left(\mathrm{x}−\mathrm{y}\right)=\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{x}+\mathrm{y}\: \\ $$

Question Number 85822    Answers: 2   Comments: 1

how to solve ((x−1))^(1/(3 )) + ((x−3))^(1/(3 )) + ((x−5))^(1/(3 )) = 0

$$\mathrm{how}\:\mathrm{to}\:\mathrm{solve}\: \\ $$$$\sqrt[{\mathrm{3}\:\:}]{\mathrm{x}−\mathrm{1}}\:+\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{x}−\mathrm{3}}\:+\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{x}−\mathrm{5}}\:=\:\mathrm{0}\: \\ $$

Question Number 85817    Answers: 2   Comments: 0

what is coefficient of x^2 in the expansion [ (1−x)(1+2x)]^6

$$\mathrm{what}\:\mathrm{is}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} \:\mathrm{in}\: \\ $$$$\mathrm{the}\:\mathrm{expansion}\:\left[\:\left(\mathrm{1}−\mathrm{x}\right)\left(\mathrm{1}+\mathrm{2x}\right)\right]^{\mathrm{6}} \\ $$

Question Number 85807    Answers: 1   Comments: 0

∫_0 ^1 ((x^2 dx)/(√(1−x^4 )))

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{x}^{\mathrm{2}} \:\mathrm{dx}}{\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }} \\ $$

Question Number 85801    Answers: 0   Comments: 3

calculate ∫_0 ^π (dx/((cosx +2sinx)^2 ))

$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{\left({cosx}\:+\mathrm{2}{sinx}\right)^{\mathrm{2}} } \\ $$

Question Number 85793    Answers: 0   Comments: 0

∫_1 ^2 ((tan^(−1) (x−1) ln(x−1))/x) dx

$$\int_{\mathrm{1}} ^{\mathrm{2}} \frac{{tan}^{−\mathrm{1}} \left({x}−\mathrm{1}\right)\:{ln}\left({x}−\mathrm{1}\right)}{{x}}\:{dx} \\ $$

Question Number 85789    Answers: 1   Comments: 0

∫(ln x)^2 dx =

$$\int\left(\mathrm{ln}\:{x}\right)^{\mathrm{2}} \:{dx}\:= \\ $$

Question Number 85786    Answers: 0   Comments: 0

posons (1+2(√3))^n =a_n +b_n (√3) montre que pgcd(a_n ;b_n )=1

$${posons}\: \\ $$$$\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{3}}\right)^{\boldsymbol{{n}}} =\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} +\boldsymbol{\mathrm{b}}_{\boldsymbol{\mathrm{n}}} \sqrt{\mathrm{3}} \\ $$$$\boldsymbol{\mathrm{montre}}\:\boldsymbol{\mathrm{que}}\:\boldsymbol{\mathrm{pgcd}}\left(\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} ;\boldsymbol{{b}}_{\boldsymbol{{n}}} \right)=\mathrm{1} \\ $$

  Pg 1257      Pg 1258      Pg 1259      Pg 1260      Pg 1261      Pg 1262      Pg 1263      Pg 1264      Pg 1265      Pg 1266   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com