Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1262
Question Number 85875 Answers: 1 Comments: 0
$$\int\left(\frac{\mathrm{1}}{\mathrm{7}\left[\mathrm{1}−\frac{\mathrm{1}}{\mathrm{7}}\mathrm{e}^{\mathrm{x}} \right]}\right)\:\mathrm{dx} \\ $$
Question Number 85872 Answers: 1 Comments: 1
$$\int\mathrm{cos}^{\mathrm{2020}} \mathrm{x}\:\mathrm{dx}\:=\:? \\ $$
Question Number 85871 Answers: 0 Comments: 3
Question Number 85868 Answers: 0 Comments: 6
$${if}\:{f}\left({x}\right)=\lfloor{x}^{\mathrm{2}} \rfloor\:\: \\ $$$${and}\:{A}=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\left({f}\left({x}\right)−{f}\left(−{x}\right)\right) \\ $$$${and}\:{B}={f}\left({x}\right)+{f}\left(−{x}\right)\:\:{when}\:{x}=\mathrm{0} \\ $$$$ \\ $$$${find}\:{A}\:{and}\:{B} \\ $$
Question Number 85866 Answers: 2 Comments: 1
Question Number 85865 Answers: 1 Comments: 0
$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$\mathrm{curl}\left(\mathrm{r}^{\mathrm{n}} \overset{\rightarrow} {\mathrm{c}}×\overset{\rightarrow} {\mathrm{r}}\right)=\left(\mathrm{n}+\mathrm{2}\right)\mathrm{r}^{\mathrm{n}} \overset{\rightarrow} {\mathrm{c}}−\mathrm{nr}^{\mathrm{n}−\mathrm{2}} \left(\overset{\rightarrow} {\mathrm{r}}.\overset{\rightarrow} {\mathrm{c}}\right)\:\:. \\ $$$$\mathrm{where}\:\mathrm{c}\:\mathrm{is}\:\mathrm{the}\:\mathrm{constant}\:\mathrm{vector}. \\ $$
Question Number 85864 Answers: 1 Comments: 0
$${simplify}\:{the}\:{expression} \\ $$$$\sqrt{\mathrm{6}+\mathrm{2}\sqrt{\mathrm{8}\sqrt{\mathrm{3}}−\mathrm{10}}}\:−\:\sqrt{\mathrm{7}−\sqrt{\mathrm{3}}}\:\:{in} \\ $$$${the}\:{form}\:\sqrt{\sqrt{{a}}+{b}}\:? \\ $$
Question Number 85859 Answers: 2 Comments: 0
$$\:\mathrm{Is}\:\mathrm{the}\:\mathrm{Var}\left(\mathrm{aX}+\mathrm{b}\right)\:=\:\mathrm{a}^{\mathrm{2}} \:\mathrm{Var}\left(\mathrm{X}\right)\:+\:\mathrm{b}? \\ $$
Question Number 85858 Answers: 0 Comments: 0
$$\mathrm{Is}\:\mathrm{a}\:\mathrm{matrix} \\ $$$$\mathrm{A}^{\mathrm{T}} \mathrm{A}\:\mathrm{always}\:\mathrm{positive}\:\mathrm{definite}? \\ $$
Question Number 85857 Answers: 1 Comments: 0
Question Number 85854 Answers: 0 Comments: 2
$$\mathrm{If}\:\mathrm{x},\mathrm{y},\mathrm{z}\:\in\:\mathbb{R}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{y}^{\mathrm{4}} \:+\:\mathrm{z}^{\mathrm{4}} \:=\:\mathrm{4xyz}\:−\mathrm{1}\: \\ $$$$\mathrm{find}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\: \\ $$
Question Number 85846 Answers: 0 Comments: 2
$$\underset{\:\mathrm{0}} {\overset{\mathrm{50}\pi} {\int}}\:\mid\:\mathrm{cos}\:{x}\:\mid{dx}\:= \\ $$
Question Number 85845 Answers: 2 Comments: 0
$$\mathrm{solve}\:\mathrm{tanh}\:\left(\mathrm{x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{cosh}\:\left(\mathrm{x}\right)} \\ $$
Question Number 85839 Answers: 1 Comments: 1
$$\int\mathrm{x}×\frac{\mathrm{1}}{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}}\mathrm{dx} \\ $$
Question Number 85835 Answers: 1 Comments: 0
$$\mathrm{xydy}=\left(\mathrm{y}^{\mathrm{2}} +\mathrm{x}\right)\mathrm{dx} \\ $$
Question Number 85834 Answers: 1 Comments: 0
$$\mathrm{2y}^{'} −\frac{\mathrm{x}}{\mathrm{y}}=\frac{\mathrm{xy}}{\mathrm{x}^{\mathrm{2}} −\mathrm{1}} \\ $$
Question Number 85832 Answers: 1 Comments: 1
$$\left(\mathrm{x}+\mathrm{x}^{−\mathrm{1}} \right)^{\mathrm{2}} +\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}^{−\mathrm{2}} \right)^{\mathrm{2}} +\left(\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{−\mathrm{3}} \right)^{\mathrm{2}} \\ $$$$+\:...\:+\:\left(\mathrm{x}^{\mathrm{10}} +\mathrm{x}^{−\mathrm{10}} \right)^{\mathrm{2}} \:=\: \\ $$
Question Number 85828 Answers: 1 Comments: 0
$$\int\frac{\mathrm{1}}{{x}+{cot}\left({x}\right)}\:{dx} \\ $$
Question Number 85826 Answers: 1 Comments: 2
$$\:^{\mathrm{x}} \mathrm{log}\:\left(\mathrm{xy}\right).\:^{\mathrm{y}} \mathrm{log}\:\left(\mathrm{xy}\right)\:+\:^{\mathrm{x}} \mathrm{log}\:\left(\mathrm{x}−\mathrm{y}\right).^{\mathrm{y}} \mathrm{log}\:\left(\mathrm{x}−\mathrm{y}\right)=\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{x}+\mathrm{y}\: \\ $$
Question Number 85822 Answers: 2 Comments: 1
$$\mathrm{how}\:\mathrm{to}\:\mathrm{solve}\: \\ $$$$\sqrt[{\mathrm{3}\:\:}]{\mathrm{x}−\mathrm{1}}\:+\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{x}−\mathrm{3}}\:+\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{x}−\mathrm{5}}\:=\:\mathrm{0}\: \\ $$
Question Number 85817 Answers: 2 Comments: 0
$$\mathrm{what}\:\mathrm{is}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} \:\mathrm{in}\: \\ $$$$\mathrm{the}\:\mathrm{expansion}\:\left[\:\left(\mathrm{1}−\mathrm{x}\right)\left(\mathrm{1}+\mathrm{2x}\right)\right]^{\mathrm{6}} \\ $$
Question Number 85807 Answers: 1 Comments: 0
$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{x}^{\mathrm{2}} \:\mathrm{dx}}{\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }} \\ $$
Question Number 85801 Answers: 0 Comments: 3
$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{\left({cosx}\:+\mathrm{2}{sinx}\right)^{\mathrm{2}} } \\ $$
Question Number 85793 Answers: 0 Comments: 0
$$\int_{\mathrm{1}} ^{\mathrm{2}} \frac{{tan}^{−\mathrm{1}} \left({x}−\mathrm{1}\right)\:{ln}\left({x}−\mathrm{1}\right)}{{x}}\:{dx} \\ $$
Question Number 85789 Answers: 1 Comments: 0
$$\int\left(\mathrm{ln}\:{x}\right)^{\mathrm{2}} \:{dx}\:= \\ $$
Question Number 85786 Answers: 0 Comments: 0
$${posons}\: \\ $$$$\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{3}}\right)^{\boldsymbol{{n}}} =\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} +\boldsymbol{\mathrm{b}}_{\boldsymbol{\mathrm{n}}} \sqrt{\mathrm{3}} \\ $$$$\boldsymbol{\mathrm{montre}}\:\boldsymbol{\mathrm{que}}\:\boldsymbol{\mathrm{pgcd}}\left(\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} ;\boldsymbol{{b}}_{\boldsymbol{{n}}} \right)=\mathrm{1} \\ $$
Pg 1257 Pg 1258 Pg 1259 Pg 1260 Pg 1261 Pg 1262 Pg 1263 Pg 1264 Pg 1265 Pg 1266
Terms of Service
Privacy Policy
Contact: info@tinkutara.com