Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1261

Question Number 87325    Answers: 1   Comments: 3

1) ∫e^(√x) dx 2)∫((√(sin(x)))/((√(sin(x)))+(√(cos(x)))))dx

$$\left.\mathrm{1}\right)\:\int{e}^{\sqrt{{x}}} \:{dx} \\ $$$$\left.\mathrm{2}\right)\int\frac{\sqrt{{sin}\left({x}\right)}}{\sqrt{{sin}\left({x}\right)}+\sqrt{{cos}\left({x}\right)}}{dx} \\ $$

Question Number 87322    Answers: 0   Comments: 0

Investigate the stationary value of (x^3 /(1+x^2 )) and sketch the graph

$$\mathrm{I}{nvestigate}\:{the}\:{stationary} \\ $$$${value}\:{of} \\ $$$$\frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:{and}\:{sketch}\:{the}\:{graph} \\ $$

Question Number 87321    Answers: 0   Comments: 0

Question Number 87316    Answers: 0   Comments: 0

Question Number 87313    Answers: 1   Comments: 4

a,b,c=1,2,3,...,n find Σ_(a≠b≠c) abc

$${a},{b},{c}=\mathrm{1},\mathrm{2},\mathrm{3},...,{n} \\ $$$${find}\:\underset{{a}\neq{b}\neq{c}} {\sum}{abc} \\ $$

Question Number 87308    Answers: 0   Comments: 0

A sequence (U_n ) is defined reculsively as U_o = (1/2) and U_(n+1) = (2/(1 + U_n )) for n ∈ N a) Show by mathematical induction that all terms in the sequence are positive. b) Given that the sequence (U_n ) is convergent, show that the limit,l, is a solution to the equation x^2 + x−2 = 0. Hence find l c) Given that (V_n ) is a sequence of general term such that V_n = ((U_n −1)/(U_n +2)) , ∀ n ∈ N. show that (V_n ) is convergent and determine its limit. hence deduce the convergence of the sequence (U_n ). Please recommend me textbooks for this topic even youtube vids please

$$\:\mathrm{A}\:\mathrm{sequence}\:\left({U}_{{n}} \right)\:\mathrm{is}\:\mathrm{defined}\:\mathrm{reculsively}\:\mathrm{as}\: \\ $$$$\:{U}_{{o}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{and}\:{U}_{{n}+\mathrm{1}} \:=\:\frac{\mathrm{2}}{\mathrm{1}\:+\:{U}_{{n}} }\:\mathrm{for}\:\mathrm{n}\:\in\:\mathbb{N} \\ $$$$\left.\:\mathrm{a}\right)\:\mathrm{Show}\:\mathrm{by}\:\mathrm{mathematical}\:\mathrm{induction}\:\mathrm{that}\:\mathrm{all}\:\mathrm{terms}\:\mathrm{in}\:\mathrm{the}\:\mathrm{sequence} \\ $$$$\:\:\:\:\:\mathrm{are}\:\mathrm{positive}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sequence}\:\left({U}_{{n}} \right)\:\mathrm{is}\:\mathrm{convergent},\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{limit},{l},\:\mathrm{is} \\ $$$$\:\:\:\:\mathrm{a}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{the}\:\mathrm{equation}\:{x}^{\mathrm{2}} \:+\:{x}−\mathrm{2}\:=\:\mathrm{0}.\:\mathrm{Hence}\:\mathrm{find}\:{l} \\ $$$$\left.\:\mathrm{c}\right)\:\:\mathrm{Given}\:\mathrm{that}\:\left({V}_{{n}} \right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{sequence}\:\mathrm{of}\:\mathrm{general}\:\mathrm{term}\:\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\:\:\:\:\:{V}_{{n}} \:=\:\frac{{U}_{{n}} −\mathrm{1}}{{U}_{{n}} +\mathrm{2}}\:,\:\forall\:{n}\:\in\:\mathbb{N}. \\ $$$$\:\:\mathrm{show}\:\mathrm{that}\:\left({V}_{{n}} \right)\:\mathrm{is}\:\mathrm{convergent}\:\mathrm{and}\:\mathrm{determine}\:\mathrm{its}\:\:\mathrm{limit}. \\ $$$$\mathrm{hence}\:\mathrm{deduce}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sequence}\:\left({U}_{{n}} \right). \\ $$$$\:\:{Please}\:{recommend}\:{me}\:{textbooks}\:{for}\:{this}\:{topic}\:{even}\:{youtube}\:{vids} \\ $$$${please} \\ $$$$ \\ $$

Question Number 87306    Answers: 1   Comments: 9

calculate by complex method ∫_1 ^(+∞) ((xdx)/(x^4 +1))

$${calculate}\:{by}\:{complex}\:{method}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{xdx}}{{x}^{\mathrm{4}} \:+\mathrm{1}} \\ $$

Question Number 87302    Answers: 1   Comments: 3

for ∣z−1∣=1 show that tan(((arg(z−1))/2))−((2i)/z)=−1

$${for}\:\mid{z}−\mathrm{1}\mid=\mathrm{1}\:{show}\:{that} \\ $$$${tan}\left(\frac{{arg}\left({z}−\mathrm{1}\right)}{\mathrm{2}}\right)−\frac{\mathrm{2}{i}}{{z}}=−\mathrm{1} \\ $$

Question Number 87301    Answers: 0   Comments: 3

Question Number 87298    Answers: 1   Comments: 0

If y=sin x , x=0 to x=2π is revolved about the x-axis, find the surface of the solid of revolution.

$${If}\:{y}=\mathrm{sin}\:{x}\:,\:\:{x}=\mathrm{0}\:{to}\:{x}=\mathrm{2}\pi\:{is} \\ $$$${revolved}\:{about}\:{the}\:{x}-{axis},\:{find} \\ $$$${the}\:{surface}\:{of}\:{the}\:{solid}\:{of} \\ $$$${revolution}. \\ $$

Question Number 87296    Answers: 1   Comments: 0

If ellipse (x^2 /a^2 )+(y^2 /b^2 )=1 (a>b) is rotated about x-axis, find the surface of the solid of revolution.

$${If}\:\:{ellipse}\:\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:\left({a}>{b}\right) \\ $$$${is}\:{rotated}\:{about}\:{x}-{axis},\:{find}\:{the} \\ $$$${surface}\:{of}\:{the}\:{solid}\:{of}\:{revolution}. \\ $$

Question Number 87285    Answers: 1   Comments: 1

Question Number 87279    Answers: 3   Comments: 2

∫(x^2 /(1+x^4 ))dx

$$\int\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$

Question Number 87275    Answers: 1   Comments: 0

If the equations x^2 +ax+b=0 and x^2 +bx+a=0 have a common root, then the numerical value of a+b is

$$\mathrm{If}\:\:\mathrm{the}\:\mathrm{equations}\:{x}^{\mathrm{2}} +{ax}+{b}=\mathrm{0}\:\mathrm{and}\: \\ $$$${x}^{\mathrm{2}} +{bx}+{a}=\mathrm{0}\:\mathrm{have}\:\mathrm{a}\:\mathrm{common}\:\mathrm{root}, \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{numerical}\:\mathrm{value}\:\mathrm{of}\:{a}+{b}\:\mathrm{is} \\ $$

Question Number 87274    Answers: 0   Comments: 0

If the equations x^2 +ax+b=0 and x^2 +bx+a=0 have a common root, then the numerical value of a+b is

$$\mathrm{If}\:\:\mathrm{the}\:\mathrm{equations}\:{x}^{\mathrm{2}} +{ax}+{b}=\mathrm{0}\:\mathrm{and}\: \\ $$$${x}^{\mathrm{2}} +{bx}+{a}=\mathrm{0}\:\mathrm{have}\:\mathrm{a}\:\mathrm{common}\:\mathrm{root}, \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{numerical}\:\mathrm{value}\:\mathrm{of}\:{a}+{b}\:\mathrm{is} \\ $$

Question Number 87273    Answers: 0   Comments: 0

If the equations x^2 +ax+b=0 and x^2 +bx+a=0 have a common root, then the numerical value of a+b is

$$\mathrm{If}\:\:\mathrm{the}\:\mathrm{equations}\:{x}^{\mathrm{2}} +{ax}+{b}=\mathrm{0}\:\mathrm{and}\: \\ $$$${x}^{\mathrm{2}} +{bx}+{a}=\mathrm{0}\:\mathrm{have}\:\mathrm{a}\:\mathrm{common}\:\mathrm{root}, \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{numerical}\:\mathrm{value}\:\mathrm{of}\:{a}+{b}\:\mathrm{is} \\ $$

Question Number 87272    Answers: 1   Comments: 0

If the equations x^2 +ax+b=0 and x^2 +bx+a=0 have a common root, then the numerical value of a+b is

$$\mathrm{If}\:\:\mathrm{the}\:\mathrm{equations}\:{x}^{\mathrm{2}} +{ax}+{b}=\mathrm{0}\:\mathrm{and}\: \\ $$$${x}^{\mathrm{2}} +{bx}+{a}=\mathrm{0}\:\mathrm{have}\:\mathrm{a}\:\mathrm{common}\:\mathrm{root}, \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{numerical}\:\mathrm{value}\:\mathrm{of}\:{a}+{b}\:\mathrm{is} \\ $$

Question Number 87253    Answers: 1   Comments: 0

Three pair of socks are placed in a box.If two socks are drawn at random from the box What is the probability (a)of drawing a match pair (b)of drawing a socks for the left and right feet (c)of drawing two socks of the right feet d)drawing two socks of left feet (e)drawing socks of the same feet

$${Three}\:{pair}\:{of}\:{socks}\:{are} \\ $$$${placed}\:{in}\:{a}\:{box}.{If}\:{two} \\ $$$${socks}\:{are}\:{drawn}\:{at} \\ $$$${random}\:{from}\:{the}\:{box} \\ $$$${What}\:{is}\:{the}\:{probability} \\ $$$$\left({a}\right){of}\:{drawing}\:\:{a}\:{match} \\ $$$${pair} \\ $$$$\left({b}\right){of}\:{drawing}\:{a}\:{socks} \\ $$$${for}\:{the}\:{left}\:{and}\:{right} \\ $$$${feet} \\ $$$$\left({c}\right){of}\:{drawing}\:{two}\:{socks}\:{of} \\ $$$${the}\:{right}\:{feet} \\ $$$$\left.{d}\right){drawing}\:{two}\:{socks}\:{of} \\ $$$${left}\:{feet} \\ $$$$\left({e}\right){drawing}\:{socks}\:{of}\:{the} \\ $$$${same}\:{feet} \\ $$$$ \\ $$

Question Number 87250    Answers: 0   Comments: 0

((cos (π/7)))^(1/(3 )) + ((cos ((3π)/7)))^(1/(3 )) + ((cos ((5π)/7)))^(1/(3 )) =?

$$\sqrt[{\mathrm{3}\:\:}]{\mathrm{cos}\:\frac{\pi}{\mathrm{7}}}\:+\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{7}}}\:+\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{cos}\:\frac{\mathrm{5}\pi}{\mathrm{7}}}\:=? \\ $$$$ \\ $$

Question Number 87243    Answers: 1   Comments: 1

lim_(x→0) ((x− sin x)/(√((1−cos x)^p ))) = k k = constant , find p

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}−\:\mathrm{sin}\:{x}}{\sqrt{\left(\mathrm{1}−\mathrm{cos}\:{x}\right)^{{p}} }}\:=\:{k}\: \\ $$$${k}\:=\:{constant}\:,\:\mathrm{find}\:\mathrm{p}\: \\ $$

Question Number 87224    Answers: 1   Comments: 7

how to simply the boolean algebra (X+Y+Z)(X′ +Y+Z) (X+Y′+Z)

$$\mathrm{how}\:\mathrm{to}\:\mathrm{simply}\:\mathrm{the}\: \\ $$$$\mathrm{boolean}\:\mathrm{algebra}\:\left(\mathrm{X}+\mathrm{Y}+\mathrm{Z}\right)\left(\mathrm{X}'\:+\mathrm{Y}+\mathrm{Z}\right) \\ $$$$\left(\mathrm{X}+\mathrm{Y}'+\mathrm{Z}\right)\: \\ $$

Question Number 87222    Answers: 0   Comments: 1

Question Number 87245    Answers: 0   Comments: 12

expand (1+x)^(−1) using maclaurins theorem and talyors formula

$${expand}\: \\ $$$$\left(\mathrm{1}+{x}\right)^{−\mathrm{1}} \\ $$$${using}\:{maclaurins} \\ $$$${theorem}\:{and}\:{talyors} \\ $$$${formula} \\ $$

Question Number 87194    Answers: 2   Comments: 6

find the solution of ((∣ log_2 (x)+2∣)/(x−3)) < 2

$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{of}\: \\ $$$$\frac{\mid\:\mathrm{log}_{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{2}\mid}{\mathrm{x}−\mathrm{3}}\:<\:\mathrm{2}\: \\ $$

Question Number 87179    Answers: 0   Comments: 2

Question Number 87175    Answers: 1   Comments: 2

if in the expansion of (1+x)^n the coefficient of x^9 is the aritmetic mean of the coeficients of x^8 and x^(10) . find the possible value of n where n is a positive integer

$$\mathrm{if}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{n}} \:\mathrm{the} \\ $$$$\mathrm{coefficient}\:\mathrm{of}\:\mathrm{x}^{\mathrm{9}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{aritmetic}\: \\ $$$$\mathrm{mean}\:\mathrm{of}\:\mathrm{the}\:\mathrm{coeficients}\:\mathrm{of}\:\mathrm{x}^{\mathrm{8}} \:\mathrm{and}\: \\ $$$$\mathrm{x}^{\mathrm{10}} .\:\mathrm{find}\:\mathrm{the}\:\mathrm{possible}\:\mathrm{value}\: \\ $$$$\mathrm{of}\:\mathrm{n}\:\mathrm{where}\:\mathrm{n}\:\mathrm{is}\:\mathrm{a}\:\mathrm{positive}\:\mathrm{integer} \\ $$

  Pg 1256      Pg 1257      Pg 1258      Pg 1259      Pg 1260      Pg 1261      Pg 1262      Pg 1263      Pg 1264      Pg 1265   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com