Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1260

Question Number 88332    Answers: 0   Comments: 0

Question Number 88314    Answers: 2   Comments: 1

( a,b )are complex numbers and a^2 +ab+b^2 =0 find ((a/(a+b)))^(2020) +((b/(a+b)))^(2020)

$$\left(\:{a},{b}\:\right){are}\:{complex}\:{numbers}\:{and}\:{a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} =\mathrm{0} \\ $$$${find}\:\left(\frac{{a}}{{a}+{b}}\right)^{\mathrm{2020}} +\left(\frac{{b}}{{a}+{b}}\right)^{\mathrm{2020}} \\ $$$$ \\ $$

Question Number 88310    Answers: 1   Comments: 1

Question Number 88306    Answers: 0   Comments: 5

Question Number 88301    Answers: 0   Comments: 2

A circle touches the four sides of quadrilateral ABCD. Show/prove that AB+CD=BC+DA. Please help.

$${A}\:{circle}\:{touches}\:{the}\:{four}\:{sides} \\ $$$${of}\:{quadrilateral}\:{ABCD}.\:\mathrm{Show}/\mathrm{prove} \\ $$$$\mathrm{that}\:\mathrm{A}{B}+{CD}={BC}+{DA}. \\ $$$$\mathrm{Please}\:\mathrm{help}. \\ $$

Question Number 88300    Answers: 0   Comments: 0

A circle touches the four sides of quadrilateral ABCD. Show/prove that AB+CD=BC+DA. Please help.

$${A}\:{circle}\:{touches}\:{the}\:{four}\:{sides} \\ $$$${of}\:{quadrilateral}\:{ABCD}.\:\mathrm{Show}/\mathrm{prove} \\ $$$$\mathrm{that}\:\mathrm{A}{B}+{CD}={BC}+{DA}. \\ $$$$\mathrm{Please}\:\mathrm{help}. \\ $$

Question Number 88307    Answers: 1   Comments: 0

∫(x^2 /(x^2 −(5/2)x−(3/2))) dx

$$\int\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} −\frac{\mathrm{5}}{\mathrm{2}}{x}−\frac{\mathrm{3}}{\mathrm{2}}}\:{dx} \\ $$

Question Number 88289    Answers: 0   Comments: 5

Question Number 88288    Answers: 1   Comments: 1

Question Number 88286    Answers: 0   Comments: 1

Question Number 88272    Answers: 1   Comments: 1

Question Number 88270    Answers: 0   Comments: 1

Question Number 88263    Answers: 1   Comments: 1

prove that ∣((e^z −e^(−z) )/2)∣^2 +cos^2 y=sinh^2 x when z=x+iy

$${prove}\:{that}\: \\ $$$$\mid\frac{{e}^{{z}} −{e}^{−{z}} }{\mathrm{2}}\mid^{\mathrm{2}} +{cos}^{\mathrm{2}} {y}={sinh}^{\mathrm{2}} {x}\:\:\:\:\:{when}\:{z}={x}+{iy} \\ $$$$ \\ $$

Question Number 88261    Answers: 1   Comments: 0

Question Number 88253    Answers: 0   Comments: 0

∫ ((ln(x^2 +1) dx)/(x+1))

$$\int\:\frac{\mathrm{ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)\:{dx}}{{x}+\mathrm{1}}\: \\ $$

Question Number 88252    Answers: 0   Comments: 0

Question Number 88251    Answers: 0   Comments: 0

Question Number 88245    Answers: 2   Comments: 0

Question Number 88240    Answers: 1   Comments: 3

Question Number 88239    Answers: 0   Comments: 0

Question Number 88238    Answers: 1   Comments: 0

solve (3x^5 y^4 +4y)dx+(2x^6 y^3 +3x)dy=0

$${solve}\: \\ $$$$\left(\mathrm{3}{x}^{\mathrm{5}} {y}^{\mathrm{4}} +\mathrm{4}{y}\right){dx}+\left(\mathrm{2}{x}^{\mathrm{6}} {y}^{\mathrm{3}} +\mathrm{3}{x}\right){dy}=\mathrm{0} \\ $$

Question Number 88236    Answers: 1   Comments: 0

Evaluate ∫(((27)/(x^3 −6)))^(1/3) dx

$$\:\mathrm{Evaluate}\:\:\int\sqrt[{\mathrm{3}}]{\frac{\mathrm{27}}{{x}^{\mathrm{3}} −\mathrm{6}}}\:{dx}\: \\ $$

Question Number 88235    Answers: 0   Comments: 1

find a maclaurine series solution to the differential equation up to the term in x^4 . (dy/dx) − x = xy if y = 1 when x = 0.

$$\:\mathrm{find}\:\mathrm{a}\:\mathrm{maclaurine}\:\mathrm{series}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\mathrm{up}\:\mathrm{to}\:\mathrm{the}\:\mathrm{term}\:\mathrm{in}\:{x}^{\mathrm{4}} . \\ $$$$\:\frac{{dy}}{{dx}}\:−\:{x}\:=\:{xy}\:\:\:\mathrm{if}\:\:{y}\:=\:\mathrm{1}\:\mathrm{when}\:{x}\:=\:\mathrm{0}. \\ $$

Question Number 88232    Answers: 0   Comments: 0

Question Number 88218    Answers: 1   Comments: 2

Question Number 88214    Answers: 2   Comments: 0

  Pg 1255      Pg 1256      Pg 1257      Pg 1258      Pg 1259      Pg 1260      Pg 1261      Pg 1262      Pg 1263      Pg 1264   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com