Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 126

Question Number 210368    Answers: 0   Comments: 0

Question Number 210362    Answers: 1   Comments: 2

If the roots of the quadratic equation (a − b + c)x^2 + (c − b − a)x + 2(b − c) = 0 are real and equal then find (a/(b − c)) .

$$\mathrm{If}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{equation} \\ $$$$\left({a}\:−\:{b}\:+\:{c}\right){x}^{\mathrm{2}} \:+\:\left({c}\:−\:{b}\:−\:{a}\right){x}\:+\:\mathrm{2}\left({b}\:−\:{c}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{are}\:\mathrm{real}\:\mathrm{and}\:\mathrm{equal}\:\mathrm{then}\:\mathrm{find}\:\frac{{a}}{{b}\:−\:{c}}\:. \\ $$

Question Number 210326    Answers: 1   Comments: 6

∫_0 ^π ((tsin(t))/(1+t^2 ))dt

$$\int_{\mathrm{0}} ^{\pi} \:\frac{{tsin}\left({t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$

Question Number 210324    Answers: 1   Comments: 2

rationalize the denominator: (1/(a+b^(1/3) +c^(1/3) ))

$$\mathrm{rationalize}\:\mathrm{the}\:\mathrm{denominator}: \\ $$$$\frac{\mathrm{1}}{{a}+{b}^{\mathrm{1}/\mathrm{3}} +{c}^{\mathrm{1}/\mathrm{3}} } \\ $$

Question Number 210318    Answers: 4   Comments: 1

Question Number 210314    Answers: 1   Comments: 0

2x+4=1

$$\mathrm{2}{x}+\mathrm{4}=\mathrm{1} \\ $$

Question Number 210312    Answers: 0   Comments: 0

Question Number 210311    Answers: 1   Comments: 0

Let a_1 =1 a_2 =2^1 a_3 =3^((2^1 )) a_4 =4^((3^((2^1 )) )) find the last two digits of a_(23) and so on

$${Let}\:{a}_{\mathrm{1}} =\mathrm{1}\:\:\:{a}_{\mathrm{2}} =\mathrm{2}^{\mathrm{1}} \:\:\:\:{a}_{\mathrm{3}} =\mathrm{3}^{\left(\mathrm{2}^{\mathrm{1}} \right)} \:\:{a}_{\mathrm{4}} =\mathrm{4}^{\left(\mathrm{3}^{\left(\mathrm{2}^{\mathrm{1}} \right)} \right)} \\ $$$${find}\:{the}\:{last}\:{two}\:{digits}\:{of}\:{a}_{\mathrm{23}} \:{and}\:{so}\:{on} \\ $$

Question Number 210310    Answers: 2   Comments: 4

Let a be the unique real zero of x^3 +x+1. find the simplest possible way to write ((18)/((a^2 +a+1)^2 )) as polynomial expression in a with ratio coefficients

$${Let}\:{a}\:{be}\:{the}\:{unique}\:{real}\:{zero}\:{of}\:{x}^{\mathrm{3}} +{x}+\mathrm{1}. \\ $$$${find}\:{the}\:{simplest}\:{possible}\:{way}\:{to}\:{write}\: \\ $$$$\frac{\mathrm{18}}{\left({a}^{\mathrm{2}} +{a}+\mathrm{1}\right)^{\mathrm{2}} }\:\:{as}\:{polynomial}\:{expression}\:{in}\:\:{a} \\ $$$${with}\:{ratio}\:{coefficients} \\ $$

Question Number 210309    Answers: 0   Comments: 1

For what value of p does the series Σ_(n=1) ^∞ (e^n /((2+e^(2n) )^p )) converge

$${For}\:{what}\:{value}\:{of}\:{p}\:{does}\:{the}\:{series} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{e}^{{n}} }{\left(\mathrm{2}+{e}^{\mathrm{2}{n}} \right)^{{p}} }\:\:\:\:\:{converge} \\ $$

Question Number 210308    Answers: 3   Comments: 1

Evaluate ∫((2y^4 )/(y^3 −y^2 +y−1))dy

$${Evaluate}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\int\frac{\mathrm{2}{y}^{\mathrm{4}} }{{y}^{\mathrm{3}} −{y}^{\mathrm{2}} +{y}−\mathrm{1}}{dy} \\ $$

Question Number 210307    Answers: 3   Comments: 0

∫((x^2 −1)/((x^2 +1)((√(1+x^4 )) )))

$$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left(\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }\:\right)} \\ $$$$ \\ $$

Question Number 210297    Answers: 0   Comments: 0

Prove the theorem. A non empty subset W of a vector space V(F) is the subset of V if and only if αW_1 +βW_2 ∈W ∀α,β ∈ F and W_1 ,W_2 ∈W

$${Prove}\:{the}\:{theorem}. \\ $$$${A}\:{non}\:{empty}\:{subset}\:{W}\:\:{of}\:{a}\:{vector}\:{space}\:{V}\left({F}\right) \\ $$$${is}\:{the}\:{subset}\:{of}\:{V}\:\:{if}\:\:{and}\:{only}\:{if} \\ $$$$\alpha{W}_{\mathrm{1}} +\beta{W}_{\mathrm{2}} \:\in{W}\:\:\forall\alpha,\beta\:\in\:{F}\:\:{and}\:{W}_{\mathrm{1}} ,{W}_{\mathrm{2}} \:\in{W} \\ $$

Question Number 210298    Answers: 0   Comments: 0

For the given system of simultaneous linear equation 2x_1 −2x_2 +3x_3 +4x_4 −x_5 =0 −x_3 −2x_4 +3x_5 =0 −x_1 +x_2 +2x_3 +5x_4 +2x_5 =0 x_1 −x_2 +2x_3 +3x_4 =0 (a)Write the augmented matrix and convert it into echelon form (b)Hence find all the solution

$${For}\:{the}\:{given}\:{system}\:{of}\:{simultaneous}\: \\ $$$${linear}\:{equation} \\ $$$$\mathrm{2}{x}_{\mathrm{1}} −\mathrm{2}{x}_{\mathrm{2}} +\mathrm{3}{x}_{\mathrm{3}} +\mathrm{4}{x}_{\mathrm{4}} −{x}_{\mathrm{5}} =\mathrm{0} \\ $$$$−{x}_{\mathrm{3}} −\mathrm{2}{x}_{\mathrm{4}} +\mathrm{3}{x}_{\mathrm{5}} =\mathrm{0} \\ $$$$−{x}_{\mathrm{1}} +{x}_{\mathrm{2}} +\mathrm{2}{x}_{\mathrm{3}} +\mathrm{5}{x}_{\mathrm{4}} +\mathrm{2}{x}_{\mathrm{5}} =\mathrm{0} \\ $$$${x}_{\mathrm{1}} −{x}_{\mathrm{2}} +\mathrm{2}{x}_{\mathrm{3}} +\mathrm{3}{x}_{\mathrm{4}} =\mathrm{0} \\ $$$$\left({a}\right){Write}\:{the}\:{augmented}\:\:{matrix}\:{and}\:{convert} \\ $$$${it}\:{into}\:{echelon}\:{form} \\ $$$$\left({b}\right){Hence}\:{find}\:{all}\:{the}\:{solution} \\ $$$$ \\ $$

Question Number 210295    Answers: 0   Comments: 1

Question Number 210292    Answers: 1   Comments: 1

Question Number 210291    Answers: 1   Comments: 0

Question Number 210290    Answers: 1   Comments: 0

Question Number 210289    Answers: 1   Comments: 0

Question Number 210265    Answers: 1   Comments: 11

If we observe when light source illuminates the surface of an object lets say its a sphere(football) ,the area visible zone decreases as the light source comes near the surface.So calculate rate of change visible area when light source is coming towards the object or moving away from the object.And in the case of earth find the equation in function of time If the light object is coming from space towards earth, express that expression in the function of time

$${If}\:{we}\:{observe}\:{when}\:{light}\:{source}\: \\ $$$${illuminates}\:{the}\:{surface}\:{of}\:{an}\:{object} \\ $$$${lets}\:{say}\:{its}\:{a}\:{sphere}\left({football}\right)\:,{the}\:{area} \\ $$$${visible}\:{zone}\:{decreases}\:{as}\:{the}\:{light}\:{source} \\ $$$${comes}\:{near}\:{the}\:{surface}.{So}\:\:{calculate}\:{rate}\:{of}\:{change} \\ $$$${visible}\:{area}\:{when}\:{light}\:{source}\:{is}\:{coming} \\ $$$${towards}\:{the}\:{object}\:{or}\:{moving}\:{away}\: \\ $$$${from}\:{the}\:{object}.{And}\:{in}\:{the}\:{case}\:{of}\:{earth} \\ $$$${find}\:{the}\:{equation}\:{in}\:{function}\:{of}\:{time} \\ $$$${If}\:{the}\:{light}\:{object}\:{is}\:{coming}\:{from}\:{space} \\ $$$${towards}\:{earth},\:{express}\:{that}\:{expression} \\ $$$${in}\:{the}\:{function}\:{of}\:{time} \\ $$$$ \\ $$$$ \\ $$

Question Number 210263    Answers: 2   Comments: 0

Question Number 210261    Answers: 2   Comments: 0

show that ((sinAcosA−sinBcosB)/(cos^2 A−sin^2 B))=tan(A−B)

$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}} \\ $$$$\frac{\boldsymbol{\mathrm{sinAcosA}}−\boldsymbol{\mathrm{sinBcosB}}}{\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \boldsymbol{\mathrm{A}}−\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{B}}}=\boldsymbol{\mathrm{tan}}\left(\boldsymbol{\mathrm{A}}−\boldsymbol{\mathrm{B}}\right) \\ $$

Question Number 210248    Answers: 1   Comments: 0

Question Number 210236    Answers: 2   Comments: 0

Question Number 210235    Answers: 2   Comments: 2

Question Number 210234    Answers: 2   Comments: 2

  Pg 121      Pg 122      Pg 123      Pg 124      Pg 125      Pg 126      Pg 127      Pg 128      Pg 129      Pg 130   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com