Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 126
Question Number 210208 Answers: 4 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{{e}^{{e}^{{x}} } } \:{e}^{{e}^{{x}} } \:{e}^{{x}} {dx} \\ $$$$ \\ $$
Question Number 210206 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} \frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}\mathrm{log}\:^{\mathrm{7}} {x}\right)} \\ $$$$ \\ $$
Question Number 210229 Answers: 3 Comments: 0
Question Number 210228 Answers: 0 Comments: 0
Question Number 210227 Answers: 0 Comments: 0
Question Number 210369 Answers: 0 Comments: 0
Question Number 210194 Answers: 0 Comments: 1
Question Number 210181 Answers: 0 Comments: 3
Question Number 210180 Answers: 1 Comments: 2
Question Number 210172 Answers: 3 Comments: 0
Question Number 210171 Answers: 0 Comments: 0
$$\mathrm{Find}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}\rightarrow+\infty} {\mathrm{lim}}\:\:\frac{\mathrm{n}}{\left(\mathrm{n}!\right)^{\mathrm{2}} \:\mathrm{4}^{\boldsymbol{\mathrm{n}}} }\:\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\prod}}\:\left(\left(\mathrm{2k}−\mathrm{1}\right)^{\mathrm{2}} \:+\:\mathrm{4}\right)\:=\:? \\ $$
Question Number 210157 Answers: 3 Comments: 0
Question Number 210156 Answers: 1 Comments: 0
Question Number 210155 Answers: 1 Comments: 0
Question Number 210142 Answers: 0 Comments: 1
Question Number 210133 Answers: 1 Comments: 0
$${calcul} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \left[{nt}^{{n}−\mathrm{1}} \left(\mathrm{1}−{t}\right)−{t}^{{n}} \right]{dt} \\ $$
Question Number 210127 Answers: 1 Comments: 0
Question Number 210126 Answers: 1 Comments: 0
Question Number 210124 Answers: 0 Comments: 0
Question Number 210120 Answers: 2 Comments: 0
Question Number 210112 Answers: 2 Comments: 0
$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}} }{\left(\boldsymbol{\mathrm{x}}+\mathrm{1}\right)\left(\boldsymbol{\mathrm{ax}}+\boldsymbol{\mathrm{b}}\right)}\boldsymbol{\mathrm{dx}}=\frac{\left(\frac{\boldsymbol{\mathrm{b}}}{\boldsymbol{\mathrm{a}}}\right)^{\boldsymbol{\mathrm{n}}} −\mathrm{1}}{\boldsymbol{\mathrm{b}}−\boldsymbol{\mathrm{a}}}\boldsymbol{\pi\mathrm{csc}}\left(\boldsymbol{\pi\mathrm{n}}\right)\:\boldsymbol{\mathrm{a}}>\mathrm{0},\boldsymbol{\mathrm{b}}>\mathrm{0},\mid\boldsymbol{\mathrm{n}}\mid<\mathrm{1} \\ $$$$\boldsymbol{\mathrm{guys}}\:\boldsymbol{\mathrm{kill}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{let}}\:\boldsymbol{\mathrm{me}}\:\boldsymbol{\mathrm{see}} \\ $$
Question Number 210098 Answers: 5 Comments: 4
$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{lnx}}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{1}}\boldsymbol{\mathrm{dx}}=\frac{\boldsymbol{\pi}^{\mathrm{2}} }{\mathrm{8}} \\ $$
Question Number 210095 Answers: 1 Comments: 1
Question Number 210091 Answers: 1 Comments: 2
$${find}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\right)=? \\ $$
Question Number 210087 Answers: 0 Comments: 0
Question Number 210085 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{2003}}+\frac{\mathrm{1}}{\mathrm{2004}}+\frac{\mathrm{1}}{\mathrm{2005}}+\frac{\mathrm{1}}{\mathrm{2006}}+\frac{\mathrm{1}}{\mathrm{2007}}+\frac{\mathrm{1}}{\mathrm{2008}}+\frac{\mathrm{1}}{\mathrm{2009}}}\:=\:? \\ $$$$\:\:\:\mathscr{H}{elp}\:{me} \\ $$$$ \\ $$
Pg 121 Pg 122 Pg 123 Pg 124 Pg 125 Pg 126 Pg 127 Pg 128 Pg 129 Pg 130
Terms of Service
Privacy Policy
Contact: info@tinkutara.com