Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1259

Question Number 88417    Answers: 0   Comments: 1

e^(−z) _1 f_1 (a;b;z)=((Γ(b))/(Γ(b−a))) G_(1,2) ^(1,1) (z∣_(0,1−b) ^(a−b+1) )

$${e}^{−{z}} \:_{\mathrm{1}} {f}_{\mathrm{1}} \left({a};{b};{z}\right)=\frac{\Gamma\left({b}\right)}{\Gamma\left({b}−{a}\right)}\:{G}_{\mathrm{1},\mathrm{2}} ^{\mathrm{1},\mathrm{1}} \left({z}\mid_{\mathrm{0},\mathrm{1}−{b}} ^{{a}−{b}+\mathrm{1}} \right) \\ $$

Question Number 88415    Answers: 0   Comments: 2

find L(((1−cosx)/x^2 )) with L lsplace transform

$${find}\:{L}\left(\frac{\mathrm{1}−{cosx}}{{x}^{\mathrm{2}} }\right)\:{with}\:{L}\:{lsplace}\:{transform} \\ $$

Question Number 88414    Answers: 0   Comments: 2

find approcimstive value of ∫_(π/3) ^(π/2) (x/(sinx))dx

$${find}\:{approcimstive}\:{value}\:{of}\:\:\:\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{x}}{{sinx}}{dx} \\ $$

Question Number 88413    Answers: 0   Comments: 3

∫_0 ^∞ e^(−x^2 ) dx

$$\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx} \\ $$$$ \\ $$

Question Number 88388    Answers: 1   Comments: 0

Question Number 88385    Answers: 0   Comments: 0

if f(x)=(√(x−2)) is there cirtical point in (2,0)

$${if}\:\:\:{f}\left({x}\right)=\sqrt{{x}−\mathrm{2}} \\ $$$${is}\:{there}\:{cirtical}\:{point}\:{in}\:\left(\mathrm{2},\mathrm{0}\right)\: \\ $$$$ \\ $$

Question Number 88378    Answers: 1   Comments: 4

find the equation of a parabola with focus (3,3) and directrix y = 0

$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{a}\:\mathrm{parabola}\:\mathrm{with}\:\mathrm{focus}\:\left(\mathrm{3},\mathrm{3}\right) \\ $$$$\mathrm{and}\:\mathrm{directrix}\:\:{y}\:=\:\mathrm{0} \\ $$

Question Number 88372    Answers: 0   Comments: 10

There are four boxes, each of them contains exactly the same numbers: 1,2,3,...,n. Four different numbers are drawn from the boxes and multiplicated with each other to get a product. What′s the sum of all products? Σ_(a≠b≠c≠d) abcd=?

$${There}\:{are}\:{four}\:{boxes},\:{each}\:{of}\:{them} \\ $$$${contains}\:{exactly}\:{the}\:{same}\:{numbers}: \\ $$$$\mathrm{1},\mathrm{2},\mathrm{3},...,{n}. \\ $$$${Four}\:{different}\:{numbers}\:{are}\:{drawn} \\ $$$${from}\:{the}\:{boxes}\:{and}\:{multiplicated} \\ $$$${with}\:{each}\:{other}\:{to}\:{get}\:{a}\:{product}. \\ $$$${What}'{s}\:{the}\:{sum}\:{of}\:{all}\:{products}? \\ $$$$\underset{{a}\neq{b}\neq{c}\neq{d}} {\sum}{abcd}=? \\ $$

Question Number 88364    Answers: 1   Comments: 0

Question Number 88360    Answers: 0   Comments: 2

(e/(√e)) × ((e)^(1/(3 )) /(e)^(1/(4 )) ) × ((e)^(1/(5 )) /(e)^(1/(6 )) ) × ((e)^(1/(7 )) /(e)^(1/(8 )) )×...=?

$$\frac{\mathrm{e}}{\sqrt{\mathrm{e}}}\:×\:\frac{\sqrt[{\mathrm{3}\:\:}]{\mathrm{e}}}{\sqrt[{\mathrm{4}\:\:}]{\mathrm{e}}}\:×\:\frac{\sqrt[{\mathrm{5}\:\:}]{\mathrm{e}}}{\sqrt[{\mathrm{6}\:\:}]{\mathrm{e}}}\:×\:\frac{\sqrt[{\mathrm{7}\:\:}]{\mathrm{e}}}{\sqrt[{\mathrm{8}\:\:}]{\mathrm{e}}}×...=? \\ $$

Question Number 88357    Answers: 0   Comments: 1

∫ _1 ^4 (dx/((4x−1)(√x)))

$$\int\underset{\mathrm{1}} {\overset{\mathrm{4}} {\:}}\:\frac{\mathrm{dx}}{\left(\mathrm{4x}−\mathrm{1}\right)\sqrt{\mathrm{x}}} \\ $$

Question Number 88352    Answers: 1   Comments: 1

Question Number 88349    Answers: 1   Comments: 1

Question Number 88339    Answers: 3   Comments: 3

∫( (√(tan x )) + (√(cot x)) )dx = ?

$$\:\int\left(\:\sqrt{\mathrm{tan}\:{x}\:}\:+\:\sqrt{\mathrm{cot}\:{x}}\:\right){dx}\:=\:? \\ $$

Question Number 88329    Answers: 0   Comments: 4

Question Number 88332    Answers: 0   Comments: 0

Question Number 88314    Answers: 2   Comments: 1

( a,b )are complex numbers and a^2 +ab+b^2 =0 find ((a/(a+b)))^(2020) +((b/(a+b)))^(2020)

$$\left(\:{a},{b}\:\right){are}\:{complex}\:{numbers}\:{and}\:{a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} =\mathrm{0} \\ $$$${find}\:\left(\frac{{a}}{{a}+{b}}\right)^{\mathrm{2020}} +\left(\frac{{b}}{{a}+{b}}\right)^{\mathrm{2020}} \\ $$$$ \\ $$

Question Number 88310    Answers: 1   Comments: 1

Question Number 88306    Answers: 0   Comments: 5

Question Number 88301    Answers: 0   Comments: 2

A circle touches the four sides of quadrilateral ABCD. Show/prove that AB+CD=BC+DA. Please help.

$${A}\:{circle}\:{touches}\:{the}\:{four}\:{sides} \\ $$$${of}\:{quadrilateral}\:{ABCD}.\:\mathrm{Show}/\mathrm{prove} \\ $$$$\mathrm{that}\:\mathrm{A}{B}+{CD}={BC}+{DA}. \\ $$$$\mathrm{Please}\:\mathrm{help}. \\ $$

Question Number 88300    Answers: 0   Comments: 0

A circle touches the four sides of quadrilateral ABCD. Show/prove that AB+CD=BC+DA. Please help.

$${A}\:{circle}\:{touches}\:{the}\:{four}\:{sides} \\ $$$${of}\:{quadrilateral}\:{ABCD}.\:\mathrm{Show}/\mathrm{prove} \\ $$$$\mathrm{that}\:\mathrm{A}{B}+{CD}={BC}+{DA}. \\ $$$$\mathrm{Please}\:\mathrm{help}. \\ $$

Question Number 88307    Answers: 1   Comments: 0

∫(x^2 /(x^2 −(5/2)x−(3/2))) dx

$$\int\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} −\frac{\mathrm{5}}{\mathrm{2}}{x}−\frac{\mathrm{3}}{\mathrm{2}}}\:{dx} \\ $$

Question Number 88289    Answers: 0   Comments: 5

Question Number 88288    Answers: 1   Comments: 1

Question Number 88286    Answers: 0   Comments: 1

Question Number 88272    Answers: 1   Comments: 1

  Pg 1254      Pg 1255      Pg 1256      Pg 1257      Pg 1258      Pg 1259      Pg 1260      Pg 1261      Pg 1262      Pg 1263   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com