Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1259

Question Number 88021    Answers: 1   Comments: 2

Question Number 88015    Answers: 0   Comments: 0

if u=f(x,y) where x=rcos(θ) , y=r sin(θ) prove ((∂u/∂x))^2 +((∂u/∂y))^2 =((∂u/∂r))^2 +(1/r)((∂u/∂θ))^2

$${if}\:{u}={f}\left({x},{y}\right)\:{where}\:{x}={rcos}\left(\theta\right)\:\:,\:{y}={r}\:{sin}\left(\theta\right) \\ $$$${prove}\: \\ $$$$\left(\frac{\partial{u}}{\partial{x}}\right)^{\mathrm{2}} +\left(\frac{\partial{u}}{\partial{y}}\right)^{\mathrm{2}} =\left(\frac{\partial{u}}{\partial{r}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{{r}}\left(\frac{\partial{u}}{\partial\theta}\right)^{\mathrm{2}} \\ $$

Question Number 88014    Answers: 2   Comments: 0

If there is no second′s hand on a clock and the minute and hour hand move in continuous fashion, then exactly at what time between 02:10 and 02:15 does the position of the two hands exactly coincide?

$${If}\:{there}\:{is}\:{no}\:{second}'{s}\:{hand}\:{on} \\ $$$${a}\:{clock}\:{and}\:{the}\:{minute}\:{and}\:{hour} \\ $$$${hand}\:{move}\:{in}\:{continuous}\:{fashion}, \\ $$$${then}\:{exactly}\:{at}\:{what}\:{time}\:{between} \\ $$$$\mathrm{02}:\mathrm{10}\:\:{and}\:\mathrm{02}:\mathrm{15}\:{does}\:{the}\:{position} \\ $$$${of}\:{the}\:{two}\:{hands}\:{exactly}\:{coincide}? \\ $$

Question Number 88010    Answers: 0   Comments: 2

∫((x^2 +2x+3)/(√(x^2 +x+1)))dx

$$\int\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{3}}{\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{dx} \\ $$

Question Number 88007    Answers: 1   Comments: 0

∫_0 ^1 (√((√((4/x)−3))−1))dx=?

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\sqrt{\sqrt{\frac{\mathrm{4}}{{x}}−\mathrm{3}}−\mathrm{1}}{dx}=? \\ $$

Question Number 88004    Answers: 1   Comments: 0

Σ_(n=1) ^∞ (H_n /(2n+1))(π^2 +2H_n ^((2)) −8H_(2n) ^((2)) ) =((83)/4)ζ(4)−7log(2)ζ(3)−8log^2 (2)ζ(2)−(2/3)log^4 (2)−16 Li_4 ((1/2)) where H_n ^((m)) =1+(1/2^m )+.....+(1/n^m ) represents the nth generalized harmonic number of order m , ζ denotes the Riemann zeta function,and Li_n designates the poly logarithm

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} }{\mathrm{2}{n}+\mathrm{1}}\left(\pi^{\mathrm{2}} +\mathrm{2}{H}_{{n}} ^{\left(\mathrm{2}\right)} −\mathrm{8}{H}_{\mathrm{2}{n}} ^{\left(\mathrm{2}\right)} \right) \\ $$$$=\frac{\mathrm{83}}{\mathrm{4}}\zeta\left(\mathrm{4}\right)−\mathrm{7}{log}\left(\mathrm{2}\right)\zeta\left(\mathrm{3}\right)−\mathrm{8}{log}^{\mathrm{2}} \left(\mathrm{2}\right)\zeta\left(\mathrm{2}\right)−\frac{\mathrm{2}}{\mathrm{3}}{log}^{\mathrm{4}} \left(\mathrm{2}\right)−\mathrm{16}\:{Li}_{\mathrm{4}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$${where}\:{H}_{{n}} ^{\left({m}\right)} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{{m}} }+.....+\frac{\mathrm{1}}{{n}^{{m}} }\:{represents}\:{the}\:{nth}\:{generalized} \\ $$$${harmonic}\:{number}\:{of}\:{order}\:{m}\:,\:\zeta\:{denotes}\:{the}\:{Riemann} \\ $$$${zeta}\:{function},{and}\:{Li}_{{n}} {designates}\:{the}\:{poly}\:{logarithm} \\ $$

Question Number 88003    Answers: 0   Comments: 2

Determine all functions f[0,1]→Ω such that ∀x∈[0,1] f ′(x)+f(x)=f(0)+f(1)

$${Determine}\:{all}\:{functions}\:{f}\left[\mathrm{0},\mathrm{1}\right]\rightarrow\Omega \\ $$$${such}\:{that}\:\forall{x}\in\left[\mathrm{0},\mathrm{1}\right]\:{f}\:'\left({x}\right)+{f}\left({x}\right)={f}\left(\mathrm{0}\right)+{f}\left(\mathrm{1}\right) \\ $$

Question Number 88000    Answers: 0   Comments: 2

Is there a formula to calculate Σ_(i=1) ^n (1/i^2 ) interms of n..?

$${Is}\:{there}\:{a}\:{formula}\:{to}\:{calculate}\: \\ $$$$ \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{i}^{\mathrm{2}} } \\ $$$${interms}\:{of}\:{n}..? \\ $$

Question Number 87998    Answers: 0   Comments: 0

calculate Σ_(n=0) ^∞ (((−1)^n )/(n^3 +1))

$${calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{3}} \:+\mathrm{1}} \\ $$

Question Number 87996    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctan(3x)−arctanx)/x)dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{3}{x}\right)−{arctanx}}{{x}}{dx} \\ $$

Question Number 87995    Answers: 1   Comments: 0

find ∫ (dx/((x^2 −1)^2 (x^2 +2)))

$${find}\:\int\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} \:+\mathrm{2}\right)} \\ $$

Question Number 87994    Answers: 0   Comments: 0

vcalculate ∫_0 ^∞ ((arctan(2[x]+3))/(x^2 +9))dx

$${vcalculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}\left[{x}\right]+\mathrm{3}\right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$

Question Number 87993    Answers: 0   Comments: 1

calculate ∫_0 ^∞ (dx/((x+1)^2 (x+2)^2 (x+3)^2 ))

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} \left({x}+\mathrm{2}\right)^{\mathrm{2}} \left({x}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$

Question Number 87991    Answers: 1   Comments: 1

Question Number 87989    Answers: 2   Comments: 0

find maximum value 2x^2 +y^2 with constraint x^2 +y^2 −4x+2y+1=0

$$\mathrm{find}\:\mathrm{maximum}\:\mathrm{value} \\ $$$$\mathrm{2x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:\mathrm{with}\:\mathrm{constraint} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{4x}+\mathrm{2y}+\mathrm{1}=\mathrm{0}\: \\ $$$$ \\ $$

Question Number 87988    Answers: 0   Comments: 0

solve the PDE 1−Z=px+py−q(√(pq)) 2−Z=px+qy+sin(p+q) 3−p(1+q^2 )=q(Z−a) 4−Z=xyp^2

$${solve}\:{the}\:{PDE} \\ $$$$\mathrm{1}−{Z}={px}+{py}−{q}\sqrt{{pq}} \\ $$$$\mathrm{2}−{Z}={px}+{qy}+{sin}\left({p}+{q}\right) \\ $$$$\mathrm{3}−{p}\left(\mathrm{1}+{q}^{\mathrm{2}} \right)={q}\left({Z}−{a}\right) \\ $$$$\mathrm{4}−{Z}={xyp}^{\mathrm{2}} \\ $$

Question Number 87977    Answers: 0   Comments: 2

∫_(−(π/2)) ^(π/2) ((sin 2x)/(1+2^x ))dx

$$\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}\:\mathrm{2}{x}}{\mathrm{1}+\mathrm{2}^{{x}} }{dx} \\ $$

Question Number 87975    Answers: 0   Comments: 7

Question Number 87969    Answers: 1   Comments: 0

Question Number 87966    Answers: 1   Comments: 0

Question Number 87963    Answers: 0   Comments: 1

Question Number 87952    Answers: 1   Comments: 5

Question Number 87944    Answers: 0   Comments: 1

y ′ = ((2xy)/(y^2 −x^2 ))

$$\mathrm{y}\:'\:=\:\frac{\mathrm{2xy}}{\mathrm{y}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} } \\ $$

Question Number 87930    Answers: 0   Comments: 0

Question Number 87927    Answers: 1   Comments: 2

x+(√y) = 7 (√x) + y = 11 find x+y

$$\mathrm{x}+\sqrt{\mathrm{y}}\:=\:\mathrm{7} \\ $$$$\sqrt{\mathrm{x}}\:+\:\mathrm{y}\:=\:\mathrm{11} \\ $$$$\mathrm{find}\:\mathrm{x}+\mathrm{y}\: \\ $$

Question Number 87939    Answers: 0   Comments: 9

  Pg 1254      Pg 1255      Pg 1256      Pg 1257      Pg 1258      Pg 1259      Pg 1260      Pg 1261      Pg 1262      Pg 1263   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com