Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 125
Question Number 210996 Answers: 2 Comments: 0
Question Number 211016 Answers: 3 Comments: 1
Question Number 211004 Answers: 0 Comments: 0
Question Number 211001 Answers: 0 Comments: 5
Question Number 210989 Answers: 1 Comments: 0
$${prove}\:{tan}\left(\mathrm{72}^{°} \right)={tan}\left(\mathrm{66}^{°} \right)+{tan}\left(\mathrm{36}^{°} \right)+{tan}\left(\mathrm{6}^{°} \right)\:\: \\ $$
Question Number 210987 Answers: 1 Comments: 0
Question Number 210974 Answers: 2 Comments: 0
$$\sqrt{\mathrm{25}} \\ $$
Question Number 210967 Answers: 0 Comments: 0
$${Q}.\mathrm{210956} \\ $$$${im}\:{read}\:{leithold}\:{book}\:{again}\:,\:{in}\:{this}\:{book}\:: \\ $$$$\left.\mathrm{1}\right\}{define}\::\:{ln}\left({x}\right)=\int_{\mathrm{1}} ^{\:{x}} {dx}/{x}\:\:\:\:\:\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right\}{define}\::\:{ln}\left({e}\right)=\mathrm{1}=\int_{\mathrm{1}} ^{\:{e}} {dx}/{x} \\ $$$$\left.\mathrm{3}\right\}{define}\::\:{exp}\left({x}\right)={y}\:\Leftrightarrow\:{ln}\left({y}\right)={x} \\ $$$$\frac{{d}\left({ln}\left({u}\right)\right)}{{du}}=\frac{\mathrm{1}}{{u}}\:\Rightarrow\:\frac{{d}\left({ln}\left({u}\right)\right)}{{dx}}=\frac{{du}/{dx}}{{u}}\:\Rightarrow \\ $$$${u}={x}^{{r}} \:\Rightarrow\:\frac{{d}\left({ln}\left({x}^{{r}} \right)\right)}{{dx}}=\frac{{rx}^{{r}−\mathrm{1}} }{{x}^{{r}} }={r}×\frac{\mathrm{1}}{{x}}={r}×\frac{{d}\left({ln}\left({x}\right)\right)}{{dx}} \\ $$$$\Rightarrow\:{ln}\left({x}^{{r}} \right)={rln}\left({x}\right)+{K}\:\Rightarrow\:{x}=\mathrm{1}\:\Rightarrow\:{K}=\mathrm{0} \\ $$$$\Rightarrow\:{ln}\left({x}^{{r}} \right)={r}×{ln}\left({x}\right)\:\:\:\:\:\:\forall{x}>\mathrm{0}\:,\:\forall{r} \\ $$$${get}\:\:{x}={e}\:\:\Rightarrow\:{ln}\left({e}^{{r}} \right)={r}×{ln}\left({e}\right)={r}\:\Rightarrow\:{exp}\left({r}\right)={e}^{{r}} \\ $$$$\Rightarrow\:{exp}\left({x}\right)={e}^{{x}} ={y}\:\:\:\:\:\forall{x} \\ $$$${log}_{{e}} \left({e}^{{x}} \right)={log}_{{e}} \left({y}\right)={x}\:\:\:{and}\:\:\:{define}:\:{ln}\left({y}\right)={x} \\ $$$$\Rightarrow\Rightarrow\Rightarrow{ln}\left({y}\right)={log}_{{e}} \left({y}\right)={x} \\ $$
Question Number 210972 Answers: 2 Comments: 0
Question Number 210971 Answers: 1 Comments: 0
Question Number 210969 Answers: 0 Comments: 0
$$\:\:\:\:\mathrm{if}\:\mathrm{a}_{\mathrm{n}} \:=\:\mathrm{n}^{\mathrm{4}} \int_{\mathrm{n}} ^{\mathrm{n}+\mathrm{1}} \:\frac{\mathrm{x}\:\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{5}} }\:\:\mathrm{then} \\ $$$$\:\:\:\:\left(\mathrm{1}\right)\:\Sigma\mathrm{a}_{\mathrm{n}} \:\mathrm{is}\:\mathrm{convergent}\:\mathrm{or}\:\mathrm{divergent}?? \\ $$$$\:\:\:\:\left(\mathrm{2}\right)\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{a}_{\mathrm{n}\:} \:=\:?? \\ $$
Question Number 210961 Answers: 3 Comments: 0
Question Number 210958 Answers: 1 Comments: 2
Question Number 210956 Answers: 1 Comments: 1
$${we}\:{define}\::\:{ln}\left({x}\right)=\int_{\mathrm{1}} ^{\:{x}} \frac{{dx}}{{x}} \\ $$$${how}\:{prove}\::\:{ln}\left({x}\right)={log}_{{e}} {x}\:\:\:? \\ $$
Question Number 210948 Answers: 2 Comments: 1
Question Number 210940 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{log}\left({x}\right){tanh}^{−\mathrm{1}} \left({x}\right){log}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{{x}}{dx} \\ $$
Question Number 210935 Answers: 2 Comments: 0
$${at}\:{what}\:{times},\:{if}\:{exist},\:{are}\:{the}\: \\ $$$${angles}\:{betwen}\:{the}\:{hour}\:{hand},\:{the} \\ $$$${minute}\:{hand}\:{and}\:{the}\:{second}\:{hand} \\ $$$${of}\:{a}\:{clock}\:{exactly}\:\mathrm{120}°? \\ $$$${assume}\:{that}\:{the}\:{hands}\:{of}\:{the}\:{clock} \\ $$$${move}\:{uniformly}. \\ $$
Question Number 210934 Answers: 2 Comments: 0
$$\mathrm{If}\:\:\:\frac{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{ax}\:−\:\mathrm{18}}{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{7x}\:+\:\mathrm{2b}}\:\:=\:\:\frac{\mathrm{x}\:−\:\mathrm{c}}{\mathrm{x}\:+\:\mathrm{5}} \\ $$$$\mathrm{Find}\:\:\:\boldsymbol{\mathrm{a}}\:+\:\boldsymbol{\mathrm{b}}\:+\:\boldsymbol{\mathrm{c}}\:=\:? \\ $$
Question Number 210933 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\mathrm{I}=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}\:} \frac{\:{sin}\left(\:\mathrm{25}{x}\:\right)}{{sinx}}\:{dx}=? \\ $$$$ \\ $$$$ \\ $$
Question Number 210927 Answers: 0 Comments: 0
Question Number 210926 Answers: 0 Comments: 1
$$\mathrm{valeur}\:\mathrm{de}\::\: \\ $$$$\mathrm{tan}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{7}}\right)+\mathrm{tan}^{\mathrm{2}} \left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)+\mathrm{tan}^{\mathrm{2}} \left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\:=\:??? \\ $$
Question Number 210922 Answers: 0 Comments: 0
Question Number 210920 Answers: 0 Comments: 0
Question Number 210919 Answers: 1 Comments: 0
Question Number 210918 Answers: 1 Comments: 0
Question Number 210917 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{intersected}\:\mathrm{by}\:\mathrm{three} \\ $$$$\mathrm{circles}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{1},\:\mathrm{centered}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{origin},\:\mathrm{at}\:\left(\mathrm{1},\:\mathrm{0}\right)\:\mathrm{and}\:\left(\mathrm{1},\:\mathrm{1}\right)\:\mathrm{respectively}. \\ $$
Pg 120 Pg 121 Pg 122 Pg 123 Pg 124 Pg 125 Pg 126 Pg 127 Pg 128 Pg 129
Terms of Service
Privacy Policy
Contact: info@tinkutara.com