Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 125

Question Number 209659    Answers: 3   Comments: 0

Question Number 209656    Answers: 2   Comments: 0

2cos^2 x−3cosx+sinx+1=0 help

$$ \\ $$$$\:\:\:\mathrm{2}{cos}^{\mathrm{2}} {x}−\mathrm{3}{cosx}+{sinx}+\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:{help} \\ $$$$ \\ $$

Question Number 209650    Answers: 0   Comments: 1

if the acceleration is constant, what will be the average and instantaneous accelerations?

$${if}\:{the}\:{acceleration}\:{is}\:{constant},\:{what}\: \\ $$$${will}\:{be}\:{the}\:{average}\:{and}\:{instantaneous} \\ $$$${accelerations}? \\ $$

Question Number 209639    Answers: 1   Comments: 1

Question Number 209637    Answers: 1   Comments: 8

Question Number 209633    Answers: 2   Comments: 0

Question Number 209630    Answers: 1   Comments: 0

If A varies as r^2 and V varies as r^3 find percentage increase in A and V if r is increased by 20%

$$\:\:{If}\:{A}\:\:{varies}\:{as}\:{r}^{\mathrm{2}} \:{and}\:{V}\:\:{varies}\:{as}\:{r}^{\mathrm{3}} \\ $$$$\:{find}\:{percentage}\:{increase}\:{in}\:{A}\:{and}\:{V} \\ $$$$\:{if}\:\:{r}\:{is}\:{increased}\:{by}\:\mathrm{20\%} \\ $$

Question Number 209631    Answers: 0   Comments: 0

Let u_n be a set satisfying u_1 =1 & u_(n+1) =u_n +((ln n)/u_n ) , ∀ n ≥1 1. Prove that u_(2023) >(√(2023.ln 2023)). 2. Find: lim_(n→∞) ((u_n .ln n)/n).

$$\mathrm{Let}\:{u}_{{n}} \:\mathrm{be}\:\mathrm{a}\:\mathrm{set}\:\mathrm{satisfying}\:{u}_{\mathrm{1}} =\mathrm{1}\:\&\:{u}_{{n}+\mathrm{1}} ={u}_{{n}} +\frac{\mathrm{ln}\:{n}}{{u}_{{n}} }\:\:,\:\forall\:{n}\:\geqslant\mathrm{1} \\ $$$$\mathrm{1}.\:\mathrm{Prove}\:\mathrm{that}\:{u}_{\mathrm{2023}} >\sqrt{\mathrm{2023}.\mathrm{ln}\:\mathrm{2023}}. \\ $$$$\mathrm{2}.\:\mathrm{Find}:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{u}_{{n}} .\mathrm{ln}\:{n}}{{n}}. \\ $$

Question Number 209624    Answers: 1   Comments: 0

I=∫_0 ^( ∞) ∫_0 ^( ∞) (( 1)/(1+ x^2 +y^2 +x^2 y^2 )) dxdy=? using polar system...

$$ \\ $$$$ \\ $$$$\mathrm{I}=\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} \:\frac{\:\mathrm{1}}{\mathrm{1}+\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{x}^{\mathrm{2}} {y}^{\mathrm{2}} }\:{dxdy}=? \\ $$$$\:{using}\:\:\:\:{polar}\:\:{system}... \\ $$

Question Number 209604    Answers: 0   Comments: 0

Question Number 209602    Answers: 2   Comments: 0

Question Number 209599    Answers: 4   Comments: 0

Question Number 209598    Answers: 3   Comments: 0

Question Number 209597    Answers: 2   Comments: 1

Question Number 209593    Answers: 0   Comments: 1

Question Number 209594    Answers: 0   Comments: 1

$$ \\ $$$$ \\ $$

Question Number 209590    Answers: 1   Comments: 1

Question Number 209582    Answers: 0   Comments: 4

Question Number 209580    Answers: 2   Comments: 0

If a_n >0 and lim_(n→∞) a_n = 0 Find: lim_(n→∞) (1/n) Σ_(k=1) ^n ln ((k/n) + a_n ) = ?

$$\mathrm{If}\:\:\:\mathrm{a}_{\boldsymbol{\mathrm{n}}} >\mathrm{0}\:\:\:\mathrm{and}\:\:\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{a}_{\boldsymbol{\mathrm{n}}} \:=\:\mathrm{0} \\ $$$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{n}}\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\:\mathrm{ln}\:\left(\frac{\mathrm{k}}{\mathrm{n}}\:+\:\mathrm{a}_{\boldsymbol{\mathrm{n}}} \right)\:=\:? \\ $$

Question Number 209576    Answers: 0   Comments: 0

select some 𝛆′s and find the corresponding N′s?of the series: Σ_(n=1) ^∞ (1/2^n ) klipto−quanta

$$\boldsymbol{\mathrm{select}}\:\boldsymbol{\mathrm{some}}\:\boldsymbol{\epsilon}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{corresponding}} \\ $$$$\boldsymbol{\mathrm{N}}'\boldsymbol{\mathrm{s}}?\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{series}}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{\boldsymbol{\mathrm{n}}} } \\ $$$$\boldsymbol{\mathrm{klipto}}−\boldsymbol{\mathrm{quanta}} \\ $$

Question Number 209567    Answers: 1   Comments: 0

*Bolts are produced in a company using two available methods. A random sample of 100 bolts each was drawn from bolts produced by the two methods 10 and 8 bolts respectively were found to be defective. Find the 95% confidence interval for the difference in the population defective for all the bolts produced in the company by the two methods* lets check this question

$$ \\ $$*Bolts are produced in a company using two available methods. A random sample of 100 bolts each was drawn from bolts produced by the two methods 10 and 8 bolts respectively were found to be defective. Find the 95% confidence interval for the difference in the population defective for all the bolts produced in the company by the two methods* lets check this question

Question Number 209560    Answers: 3   Comments: 0

In the triangle ABC ; cos(B−C)=(1/3) Show that : ((1−3cos(B+C))/(6sinBcosC))=tanC

$${In}\:{the}\:{triangle}\:{ABC}\:;\:{cos}\left({B}−{C}\right)=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${Show}\:{that}\::\:\:\frac{\mathrm{1}−\mathrm{3}{cos}\left({B}+{C}\right)}{\mathrm{6}{sinBcosC}}={tanC} \\ $$$$ \\ $$

Question Number 209557    Answers: 2   Comments: 0

Given ∫_2 ^4 (ax^n +1)dx=58 ∫_0 ^2 (ax^n +1)dx=10 find the value of a and n

$${Given}\: \\ $$$$\:\int_{\mathrm{2}} ^{\mathrm{4}} \left({ax}^{{n}} +\mathrm{1}\right){dx}=\mathrm{58}\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{2}} \left({ax}^{{n}} +\mathrm{1}\right){dx}=\mathrm{10} \\ $$$${find}\:{the}\:{value}\:{of}\:\:{a}\:\:\:{and}\:\:{n} \\ $$

Question Number 209550    Answers: 2   Comments: 0

Question Number 209545    Answers: 1   Comments: 0

L(sing((dy/dx)))=? L() ≡ laplas transfer

$${L}\left({sing}\left(\frac{{dy}}{{dx}}\right)\right)=? \\ $$$${L}\left(\right)\:\:\equiv\:\:{laplas}\:{transfer} \\ $$

Question Number 209544    Answers: 1   Comments: 0

∫_0 ^4 (dx/(∣x−1∣+∣x−2∣+∣x−4∣))

$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{4}} \frac{{dx}}{\mid{x}−\mathrm{1}\mid+\mid{x}−\mathrm{2}\mid+\mid{x}−\mathrm{4}\mid} \\ $$$$ \\ $$

  Pg 120      Pg 121      Pg 122      Pg 123      Pg 124      Pg 125      Pg 126      Pg 127      Pg 128      Pg 129   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com