Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 125

Question Number 210265    Answers: 1   Comments: 11

If we observe when light source illuminates the surface of an object lets say its a sphere(football) ,the area visible zone decreases as the light source comes near the surface.So calculate rate of change visible area when light source is coming towards the object or moving away from the object.And in the case of earth find the equation in function of time If the light object is coming from space towards earth, express that expression in the function of time

$${If}\:{we}\:{observe}\:{when}\:{light}\:{source}\: \\ $$$${illuminates}\:{the}\:{surface}\:{of}\:{an}\:{object} \\ $$$${lets}\:{say}\:{its}\:{a}\:{sphere}\left({football}\right)\:,{the}\:{area} \\ $$$${visible}\:{zone}\:{decreases}\:{as}\:{the}\:{light}\:{source} \\ $$$${comes}\:{near}\:{the}\:{surface}.{So}\:\:{calculate}\:{rate}\:{of}\:{change} \\ $$$${visible}\:{area}\:{when}\:{light}\:{source}\:{is}\:{coming} \\ $$$${towards}\:{the}\:{object}\:{or}\:{moving}\:{away}\: \\ $$$${from}\:{the}\:{object}.{And}\:{in}\:{the}\:{case}\:{of}\:{earth} \\ $$$${find}\:{the}\:{equation}\:{in}\:{function}\:{of}\:{time} \\ $$$${If}\:{the}\:{light}\:{object}\:{is}\:{coming}\:{from}\:{space} \\ $$$${towards}\:{earth},\:{express}\:{that}\:{expression} \\ $$$${in}\:{the}\:{function}\:{of}\:{time} \\ $$$$ \\ $$$$ \\ $$

Question Number 210263    Answers: 2   Comments: 0

Question Number 210261    Answers: 2   Comments: 0

show that ((sinAcosA−sinBcosB)/(cos^2 A−sin^2 B))=tan(A−B)

$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}} \\ $$$$\frac{\boldsymbol{\mathrm{sinAcosA}}−\boldsymbol{\mathrm{sinBcosB}}}{\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \boldsymbol{\mathrm{A}}−\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{B}}}=\boldsymbol{\mathrm{tan}}\left(\boldsymbol{\mathrm{A}}−\boldsymbol{\mathrm{B}}\right) \\ $$

Question Number 210248    Answers: 1   Comments: 0

Question Number 210236    Answers: 2   Comments: 0

Question Number 210235    Answers: 2   Comments: 2

Question Number 210234    Answers: 2   Comments: 2

Question Number 210233    Answers: 2   Comments: 0

Question Number 210231    Answers: 0   Comments: 1

Resoudre dans R { ((acos x−bsin x=c (x≠0))),((sin ((1/(sin x))) =d (−1≤d≤+1))) :}

$$\mathrm{Resoudre}\:\boldsymbol{\mathrm{dans}}\:\mathbb{R} \\ $$$$\begin{cases}{\boldsymbol{\mathrm{a}}\mathrm{cos}\:\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{b}}\mathrm{sin}\:\boldsymbol{\mathrm{x}}=\boldsymbol{\mathrm{c}}\:\:\:\:\:\left(\boldsymbol{\mathrm{x}}\neq\mathrm{0}\right)}\\{\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{sin}\:\boldsymbol{\mathrm{x}}}\right)\:\:\:\:\:\:\:\:\:=\boldsymbol{\mathrm{d}}\:\:\:\:\left(−\mathrm{1}\leqslant\boldsymbol{\mathrm{d}}\leqslant+\mathrm{1}\right)}\end{cases} \\ $$$$ \\ $$

Question Number 210208    Answers: 4   Comments: 0

∫_0 ^1 e^e^e^x e^e^x e^x dx

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{{e}^{{e}^{{x}} } } \:{e}^{{e}^{{x}} } \:{e}^{{x}} {dx} \\ $$$$ \\ $$

Question Number 210206    Answers: 0   Comments: 0

Ω=∫_(1/e) ^e (dx/((1+x^2 )(1+xlog^7 x)))

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} \frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}\mathrm{log}\:^{\mathrm{7}} {x}\right)} \\ $$$$ \\ $$

Question Number 210229    Answers: 3   Comments: 0

Question Number 210228    Answers: 0   Comments: 0

Question Number 210227    Answers: 0   Comments: 0

Question Number 210369    Answers: 0   Comments: 0

Question Number 210194    Answers: 0   Comments: 1

Question Number 210181    Answers: 0   Comments: 3

Question Number 210180    Answers: 1   Comments: 2

Question Number 210172    Answers: 3   Comments: 0

Question Number 210171    Answers: 0   Comments: 0

Find: lim_(n→+∞) (n/((n!)^2 4^n )) Π_(k=1) ^n ((2k−1)^2 + 4) = ?

$$\mathrm{Find}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}\rightarrow+\infty} {\mathrm{lim}}\:\:\frac{\mathrm{n}}{\left(\mathrm{n}!\right)^{\mathrm{2}} \:\mathrm{4}^{\boldsymbol{\mathrm{n}}} }\:\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\prod}}\:\left(\left(\mathrm{2k}−\mathrm{1}\right)^{\mathrm{2}} \:+\:\mathrm{4}\right)\:=\:? \\ $$

Question Number 210157    Answers: 3   Comments: 0

Question Number 210156    Answers: 1   Comments: 0

Question Number 210155    Answers: 1   Comments: 0

Question Number 210142    Answers: 0   Comments: 1

Question Number 210133    Answers: 1   Comments: 0

calcul ∫_0 ^1 [nt^(n−1) (1−t)−t^n ]dt

$${calcul} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \left[{nt}^{{n}−\mathrm{1}} \left(\mathrm{1}−{t}\right)−{t}^{{n}} \right]{dt} \\ $$

Question Number 210127    Answers: 1   Comments: 0

  Pg 120      Pg 121      Pg 122      Pg 123      Pg 124      Pg 125      Pg 126      Pg 127      Pg 128      Pg 129   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com