Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1249
Question Number 89461 Answers: 2 Comments: 0
Question Number 89456 Answers: 1 Comments: 0
$$\left(\mathrm{log}_{{x}} \left(\mathrm{6}\right)\right)^{\mathrm{2}} \:+\:\left(\mathrm{log}_{\frac{\mathrm{1}}{\mathrm{6}}} \left(\frac{\mathrm{1}}{{x}}\right)\right)^{\mathrm{2}} +\: \\ $$$$\mathrm{log}_{\frac{\mathrm{1}}{\sqrt{{x}}}} \left(\frac{\mathrm{1}}{\mathrm{6}}\right)\:+\:\mathrm{log}_{\sqrt{\mathrm{6}}} \:\left({x}\right)\:+\:\frac{\mathrm{3}}{\mathrm{4}}\:=\:\mathrm{0} \\ $$
Question Number 89454 Answers: 0 Comments: 1
Question Number 89451 Answers: 1 Comments: 0
$$\mathrm{log}_{\mathrm{5}} \:\left(\left(\mathrm{3}−{x}\right)\left({x}^{\mathrm{2}} +\mathrm{2}\right)\right)\:\geqslant\:\mathrm{log}_{\mathrm{5}} \left({x}^{\mathrm{2}} −\mathrm{7}{x}+\mathrm{12}\right)+\mathrm{log}_{\mathrm{5}} \left(\mathrm{5}−{x}\right) \\ $$
Question Number 89446 Answers: 0 Comments: 1
$$.. \\ $$
Question Number 89592 Answers: 1 Comments: 2
$${cos}\left({x}\right)={k}\: \\ $$$$\left\{−\mathrm{1}\leqslant{k}<\mathrm{0}\right\} \\ $$
Question Number 89596 Answers: 0 Comments: 1
Question Number 89593 Answers: 0 Comments: 5
$${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sec}\left({x}\right)\right)\:{ln}\left({csc}\left({x}\right)\right)\:{dx}=\frac{\pi^{\mathrm{2}} \:{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}}−\frac{\pi^{\mathrm{4}} }{\mathrm{48}} \\ $$
Question Number 89425 Answers: 0 Comments: 0
$$\int_{\mathrm{1}} ^{\mathrm{4}} \sqrt{\mathrm{1}+\left(\frac{{y}^{\mathrm{3}} }{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}{y}^{−\mathrm{1}} \right)^{\mathrm{2}} }\:{dy} \\ $$$$ \\ $$
Question Number 89422 Answers: 1 Comments: 1
Question Number 89415 Answers: 1 Comments: 4
Question Number 89412 Answers: 0 Comments: 8
Question Number 89399 Answers: 0 Comments: 11
$$\mathrm{Hi}. \\ $$$$\mathrm{A}\:\mathrm{ballot}\:\mathrm{box}\:\mathrm{contains}\:\mathrm{3}\:\mathrm{red}\:\mathrm{balls},\:\mathrm{4}\:\mathrm{blues} \\ $$$$\mathrm{balls}\:\mathrm{and}\:\mathrm{5}\:\mathrm{white}\:\mathrm{balls}. \\ $$$$\mathrm{we}\:\mathrm{draw}\:\mathrm{successively}\:\mathrm{3}\:\mathrm{balls}\:\mathrm{in}\:\mathrm{ballot}\:\mathrm{box}\: \\ $$$$\mathrm{by}\:\mathrm{re}−\mathrm{puting}\:\mathrm{the}\:\mathrm{drawn}\:\mathrm{balls}. \\ $$$$\left.\mathrm{1}\right)\mathrm{Calculate}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{draws}\: \\ $$$$\mathrm{containing}\:\mathrm{one}\:\mathrm{ball}\:\mathrm{of}\:\mathrm{each}\:\mathrm{color}. \\ $$
Question Number 89385 Answers: 1 Comments: 1
Question Number 89384 Answers: 0 Comments: 3
Question Number 141569 Answers: 0 Comments: 0
$$\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\left(\frac{\mathrm{110}^{\mathrm{2}} }{\left(\mathrm{11}−\mathrm{10}\right)\left(\mathrm{11}^{\mathrm{2}} −\mathrm{10}^{\mathrm{2}} \right)}\:+\:\frac{\mathrm{110}^{\mathrm{2}} }{\left(\mathrm{11}^{\mathrm{2}} −\mathrm{10}^{\mathrm{2}} \right)\left(\mathrm{11}^{\mathrm{3}} −\mathrm{10}^{\mathrm{3}} \right)}\:+\:....+\:\frac{\mathrm{110}^{\mathrm{2}} }{\left(\mathrm{11}^{\mathrm{n}} −\mathrm{10}^{\mathrm{n}} \right)\left(\mathrm{11}^{\mathrm{n}+\mathrm{1}} −\mathrm{10}^{\mathrm{n}+\mathrm{1}} \right)}\right) \\ $$
Question Number 89382 Answers: 1 Comments: 2
$$\int_{\mathrm{0}} ^{\infty} {e}^{−\mathrm{2}{x}} \:{cos}\left(\mathrm{3}{x}\right)\:{sin}\left(\mathrm{4}{x}\right) \\ $$
Question Number 89361 Answers: 1 Comments: 0
Question Number 89351 Answers: 0 Comments: 4
$${prove}\:\mathrm{tan}\:\mathrm{3}^{{o}} ×\mathrm{tan}\:\mathrm{39}^{{o}} ×\mathrm{tan}\:\mathrm{89}^{{o}} \:=\:\mathrm{tan}\:\mathrm{15}^{{o}} \\ $$
Question Number 89511 Answers: 1 Comments: 6
$$\int_{\mathrm{0}} ^{\mathrm{3}\pi} \sqrt{\mathrm{1}+{sin}^{\mathrm{4}} \frac{\theta}{\mathrm{3}}\:{cos}^{\mathrm{2}} \frac{\theta}{\mathrm{3}}}\:{d}\theta \\ $$
Question Number 89510 Answers: 0 Comments: 3
$${Find}\:{the}\:{expansion}\:{of}\:{Xe}^{\frac{\mathrm{1}}{{x}}} \: \\ $$
Question Number 89344 Answers: 0 Comments: 6
$$\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{8}\sqrt{\mathrm{2}{xy}}\:=\:\mathrm{4} \\ $$$$\mathrm{4}{y}−\sqrt{\mathrm{8}{xy}−\mathrm{1}}\:=\:\mathrm{1} \\ $$
Question Number 89343 Answers: 0 Comments: 2
$${Given}\:\alpha\:{and}\:\beta\:\in\mathbb{N}\:{such}\:{that} \\ $$$${I}\left(\alpha,\beta\right)=\int_{} ^{\mathrm{1}} {t}^{\alpha} \left(\mathrm{1}−{t}\right)^{\beta} {dt} \\ $$$${show}\:{that} \\ $$$${I}\left(\alpha;\beta\right)=\frac{\alpha!\beta!}{\left(\alpha+\beta+\mathrm{1}\right)!} \\ $$
Question Number 89341 Answers: 0 Comments: 3
$$\underset{{n}\rightarrow\infty} {{lim}}\sqrt[{{n}}]{\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}{sin}\left(\frac{{k}\pi}{\mathrm{2}{n}}\right)}=? \\ $$
Question Number 89327 Answers: 1 Comments: 2
Question Number 89324 Answers: 0 Comments: 1
Pg 1244 Pg 1245 Pg 1246 Pg 1247 Pg 1248 Pg 1249 Pg 1250 Pg 1251 Pg 1252 Pg 1253
Terms of Service
Privacy Policy
Contact: info@tinkutara.com