Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1249

Question Number 87034    Answers: 1   Comments: 0

A and B are running along the wall of a square park. The corners of the park are facing north, south, east and west and are named N, S, E, W respectively. They start at E and run towards S. If the speed of A is 6 tines that of B, where do they meet for the 27^(th) time?

$$\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{running}\:\mathrm{along}\:\mathrm{the}\:\mathrm{wall}\:\mathrm{of} \\ $$$$\mathrm{a}\:\mathrm{square}\:\mathrm{park}.\:\mathrm{The}\:\mathrm{corners}\:\mathrm{of}\:\mathrm{the}\:\mathrm{park} \\ $$$$\mathrm{are}\:\mathrm{facing}\:\mathrm{north},\:\mathrm{south},\:\mathrm{east}\:\mathrm{and}\:\mathrm{west} \\ $$$$\mathrm{and}\:\mathrm{are}\:\mathrm{named}\:\mathrm{N},\:\mathrm{S},\:\mathrm{E},\:\mathrm{W}\:\:\mathrm{respectively}. \\ $$$$\mathrm{They}\:\mathrm{start}\:\mathrm{at}\:\mathrm{E}\:\mathrm{and}\:\mathrm{run}\:\mathrm{towards}\:\mathrm{S}.\:\mathrm{If} \\ $$$$\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{A}\:\mathrm{is}\:\mathrm{6}\:\mathrm{tines}\:\mathrm{that}\:\mathrm{of}\:\mathrm{B},\:\mathrm{where} \\ $$$$\mathrm{do}\:\mathrm{they}\:\mathrm{meet}\:\mathrm{for}\:\mathrm{the}\:\mathrm{27}^{\mathrm{th}} \:\mathrm{time}? \\ $$

Question Number 87048    Answers: 0   Comments: 0

Express into partial fractions (x^6 /(x^(12) +1))

$${Express}\:\:{into}\:\:{partial}\:\:{fractions} \\ $$$$\:\:\:\:\:\:\:\:\frac{{x}^{\mathrm{6}} }{{x}^{\mathrm{12}} +\mathrm{1}} \\ $$

Question Number 87031    Answers: 1   Comments: 1

Question Number 87033    Answers: 1   Comments: 0

Find the value of x^3 + (1/x^3 ) , when x + (1/x) = 5

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}^{\mathrm{3}} +\:\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\:\:\:,\:\:\:\mathrm{when} \\ $$$$\:\:\:{x}\:+\:\frac{\mathrm{1}}{{x}}\:=\:\mathrm{5} \\ $$

Question Number 87028    Answers: 0   Comments: 0

solve D.E (dy/dx)+((ysec^3 y)/x)=x^2 y^2

$${solve}\:{D}.{E} \\ $$$$\frac{{dy}}{{dx}}+\frac{{y}\mathrm{sec}\:^{\mathrm{3}} {y}}{{x}}={x}^{\mathrm{2}} {y}^{\mathrm{2}} \\ $$

Question Number 87027    Answers: 1   Comments: 0

Question Number 87025    Answers: 0   Comments: 2

∫_0 ^(π/2) ((arc tan ((√2) tan x))/(tan x)) dx?

$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{\mathrm{arc}\:\mathrm{tan}\:\left(\sqrt{\mathrm{2}}\:\mathrm{tan}\:\mathrm{x}\right)}{\mathrm{tan}\:\mathrm{x}}\:\mathrm{dx}?\: \\ $$

Question Number 87023    Answers: 0   Comments: 1

∫ (dx/(√(x^2 −8x+15))) ?

$$\int\:\:\frac{\mathrm{dx}}{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{8x}+\mathrm{15}}}\:?\: \\ $$

Question Number 87021    Answers: 0   Comments: 0

∫((ln(1+asin(x^2 ))/(sin(x^2 )))dx

$$\int\frac{{ln}\left(\mathrm{1}+{asin}\left({x}^{\mathrm{2}} \right)\right.}{{sin}\left({x}^{\mathrm{2}} \right)}{dx} \\ $$

Question Number 87014    Answers: 1   Comments: 1

calculate ∫_0 ^∞ (e^(−[2x]) /((x+1)^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\left[\mathrm{2}{x}\right]} }{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 87013    Answers: 0   Comments: 2

calculate ∫_0 ^∞ (e^(−[x]) /(x+1))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\left[{x}\right]} }{{x}+\mathrm{1}}{dx} \\ $$

Question Number 87009    Answers: 2   Comments: 0

solve 7⌊x+3⌋^2 −3⌊x⌋+6=5 mod 11

$${solve} \\ $$$$\mathrm{7}\lfloor{x}+\mathrm{3}\rfloor^{\mathrm{2}} −\mathrm{3}\lfloor{x}\rfloor+\mathrm{6}=\mathrm{5}\:{mod}\:\mathrm{11} \\ $$

Question Number 86998    Answers: 1   Comments: 0

∫((6e^x )/(e^(2x) −1)) dx

$$\int\frac{\mathrm{6}{e}^{{x}} }{{e}^{\mathrm{2}{x}} −\mathrm{1}}\:{dx} \\ $$

Question Number 86995    Answers: 1   Comments: 0

∫_0 ^π ((a^n sin^2 (x)+b^n cos^2 (x))/(a^(2n) sin^2 (x)+b^(2n) cos^2 (x)))dx ; a>b

$$\int_{\mathrm{0}} ^{\pi} \frac{{a}^{{n}} {sin}^{\mathrm{2}} \left({x}\right)+{b}^{{n}} {cos}^{\mathrm{2}} \left({x}\right)}{{a}^{\mathrm{2}{n}} {sin}^{\mathrm{2}} \left({x}\right)+{b}^{\mathrm{2}{n}} {cos}^{\mathrm{2}} \left({x}\right)}{dx}\:;\:{a}>{b} \\ $$

Question Number 86994    Answers: 0   Comments: 0

Question Number 86993    Answers: 1   Comments: 1

Question Number 86987    Answers: 0   Comments: 1

Question Number 86983    Answers: 1   Comments: 4

1) calculate ∫ (dx/((x+1)^3 (x−2)^3 )) 2) decompose the fraction F(x)=(1/((x+1)^3 (x−2)^3 ))

$$\left.\mathrm{1}\right)\:{calculate}\:\int\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}−\mathrm{2}\right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{2}\right)\:{decompose}\:{the}\:{fraction}\:{F}\left({x}\right)=\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}−\mathrm{2}\right)^{\mathrm{3}} } \\ $$

Question Number 86966    Answers: 0   Comments: 1

Question Number 86965    Answers: 0   Comments: 0

Question Number 86963    Answers: 0   Comments: 0

calculate I =∫ cos^4 x sh^2 x dx

$${calculate}\:\:{I}\:=\int\:\:{cos}^{\mathrm{4}} {x}\:{sh}^{\mathrm{2}} {x}\:{dx} \\ $$

Question Number 86962    Answers: 0   Comments: 0

calculste ∫_0 ^1 x^2 ln(x)ln(1−x)dx

$${calculste}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{\mathrm{2}} {ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right){dx} \\ $$

Question Number 86960    Answers: 0   Comments: 1

let the mstrice A = (((1 1)),((−1 0)) ) 1)calculste A^n 2) find e^A and e^(−A) 3)find sin(A) and cis(A)

$${let}\:{the}\:{mstrice}\:{A}\:\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{−\mathrm{1}\:\:\:\:\:\:\:\mathrm{0}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right){calculste}\:{A}^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{e}^{{A}} \:{and}\:{e}^{−{A}} \\ $$$$\left.\mathrm{3}\right){find}\:{sin}\left({A}\right)\:{and}\:{cis}\left({A}\right) \\ $$

Question Number 86958    Answers: 0   Comments: 1

calculate Σ_(n=1) ^∞ (((−1)^n )/(n^3 (n+1)^2 ))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{3}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 86957    Answers: 0   Comments: 2

find ∫ arctan(((1−u)/(1+u)))du

$${find}\:\int\:\:{arctan}\left(\frac{\mathrm{1}−{u}}{\mathrm{1}+{u}}\right){du} \\ $$

Question Number 86956    Answers: 0   Comments: 3

find ∫(1−(1/x^2 ))arctan(2x)dx

$${find}\:\int\left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){arctan}\left(\mathrm{2}{x}\right){dx} \\ $$

  Pg 1244      Pg 1245      Pg 1246      Pg 1247      Pg 1248      Pg 1249      Pg 1250      Pg 1251      Pg 1252      Pg 1253   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com