Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1245
Question Number 90402 Answers: 1 Comments: 0
Question Number 90432 Answers: 1 Comments: 1
$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\mathrm{x}\left[\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}−\mathrm{x}\:\right]\:=? \\ $$
Question Number 90394 Answers: 1 Comments: 2
$$\left(\mathrm{3x}^{\mathrm{2}} +\mathrm{9xy}+\mathrm{5y}^{\mathrm{2}} \right)\mathrm{dx}\:=\:\left(\mathrm{6x}^{\mathrm{2}} +\mathrm{4xy}\right)\mathrm{dy} \\ $$
Question Number 90383 Answers: 0 Comments: 1
$$\mathrm{find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\: \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{function}\:\mathrm{differentiable}\:\mathrm{at}\: \\ $$$$\mathrm{x}=\mathrm{1}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\begin{cases}{\mathrm{x}^{\mathrm{2}} ,\:\mathrm{x}\leqslant\mathrm{1}}\\{\mathrm{2ax}+\mathrm{b}\:,\:\mathrm{x}>\mathrm{1}}\end{cases} \\ $$
Question Number 90379 Answers: 0 Comments: 2
Question Number 90440 Answers: 0 Comments: 3
Question Number 90362 Answers: 0 Comments: 7
Question Number 90360 Answers: 1 Comments: 1
Question Number 90359 Answers: 0 Comments: 1
$$\int\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \left({x}\right)} \\ $$
Question Number 90358 Answers: 0 Comments: 0
Question Number 90357 Answers: 0 Comments: 0
$$\int\:\frac{{x}.\mathrm{2}^{{x}} }{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{dx}\:=\:? \\ $$
Question Number 90356 Answers: 0 Comments: 0
Question Number 90350 Answers: 1 Comments: 0
$${n}^{\mathrm{2}} {x}−\mathrm{5}{a}^{\mathrm{2}} {y}^{\mathrm{2}} −{n}^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{5}{a}^{\mathrm{2}} {x} \\ $$
Question Number 90347 Answers: 2 Comments: 5
Question Number 90341 Answers: 0 Comments: 0
$${Express}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{36}\:\:{interm} \\ $$$${conjugate}\:{coordinate} \\ $$
Question Number 90331 Answers: 1 Comments: 1
Question Number 90330 Answers: 0 Comments: 1
Question Number 90327 Answers: 0 Comments: 1
Question Number 90326 Answers: 1 Comments: 1
Question Number 90321 Answers: 2 Comments: 2
$$\int\frac{\mathrm{1}}{{x}\sqrt[{\mathrm{3}}]{\mathrm{1}+{x}^{\mathrm{5}} }}{dx} \\ $$$$ \\ $$$$\int\frac{\mathrm{1}}{{sin}^{\mathrm{2}} \left({x}\right)+\mathrm{5}{sin}\left({x}\right)+\mathrm{6}}{dx} \\ $$$$ \\ $$$$\int\frac{\mathrm{2}{z}−\mathrm{5}}{\mathrm{4}{z}^{\mathrm{2}} +\mathrm{4}{z}+\mathrm{5}}{dz} \\ $$$$ \\ $$$$\int{sec}^{\mathrm{5}} \left(\mathrm{5}\theta\right)\:\sqrt{{tan}^{\mathrm{3}} \left(\mathrm{5}\theta\right)}\:{d}\theta \\ $$$$ \\ $$$$ \\ $$
Question Number 90318 Answers: 0 Comments: 0
$$\mathrm{Please}\:\mathrm{can}\:\mathrm{this}\:\mathrm{be}\:\mathrm{resolve}\:\mathrm{in}\:\mathrm{partial}\:\mathrm{fraction}? \\ $$$$\:\:\:\:\:\:\frac{\mathrm{sec}^{\mathrm{2}} \mathrm{x}\:\:−\:\:\frac{\mathrm{2}}{\mathrm{x}^{\mathrm{2}} }}{\left(\mathrm{tan}\:\mathrm{x}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{2}} } \\ $$
Question Number 90316 Answers: 1 Comments: 2
$$\begin{vmatrix}{{x}}&{\mathrm{7}}\\{\mathrm{9}}&{\mathrm{8}−{x}}\end{vmatrix}=\begin{vmatrix}{\mathrm{7}}&{\mathrm{0}}&{−\mathrm{3}}\\{−\mathrm{5}}&{{x}}&{−\mathrm{6}}\\{−\mathrm{3}}&{−\mathrm{5}}&{{x}−\mathrm{9}}\end{vmatrix} \\ $$$$ \\ $$
Question Number 90307 Answers: 1 Comments: 0
$$\:\:\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}}. \\ $$$$\:\:\:\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} \boldsymbol{\mathrm{D}}^{\mathrm{2}} −\mathrm{2}\right)\boldsymbol{\mathrm{y}}\:=\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:+\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}. \\ $$
Question Number 90306 Answers: 2 Comments: 2
$$\underset{\lambda\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{\lambda} ^{\mathrm{2}\lambda} \:\frac{{e}^{−{x}} }{{x}}{dx} \\ $$
Question Number 90308 Answers: 1 Comments: 1
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{x}}{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right){dx} \\ $$
Question Number 90301 Answers: 0 Comments: 1
$$\mathrm{Help}\:\mathrm{me} \\ $$$$ \\ $$$$\mathrm{z}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{y}.\mathrm{e}^{\frac{\mathrm{x}}{\mathrm{y}}} . \\ $$$$\mathrm{z}'_{\mathrm{x}} =...?\:\mathrm{and}\:\mathrm{z}'_{\mathrm{y}} =...? \\ $$
Pg 1240 Pg 1241 Pg 1242 Pg 1243 Pg 1244 Pg 1245 Pg 1246 Pg 1247 Pg 1248 Pg 1249
Terms of Service
Privacy Policy
Contact: info@tinkutara.com