Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1241
Question Number 90630 Answers: 1 Comments: 1
$${f}\left({x}\right)\:=\:{xe}^{−{x}} \\ $$$${f}^{\left(\mathrm{2020}\right)} \left({x}\right)\:=\: \\ $$
Question Number 90629 Answers: 1 Comments: 1
$$\mathrm{If}\:\:\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{1}−{x}\right)−\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} {x}\:=\:\frac{\pi}{\mathrm{2}},\:\mathrm{then}\:{x}= \\ $$
Question Number 90628 Answers: 0 Comments: 1
$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{sin}\:\frac{\pi}{\mathrm{14}}\:\mathrm{sin}\:\frac{\mathrm{3}\pi}{\mathrm{14}}\:\mathrm{sin}\:\frac{\mathrm{5}\pi}{\mathrm{14}}\:\:\mathrm{is} \\ $$
Question Number 90625 Answers: 0 Comments: 0
$$\int{e}^{{arcsinx}} {dx} \\ $$
Question Number 90609 Answers: 0 Comments: 3
$${find}\:{the}\:{infinite}\:{sum}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{F}_{{n}} }{\mathrm{2}^{{n}} }\: \\ $$$${where}\:{F}_{{n}} =\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}+\mathrm{1}} −\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}+\mathrm{1}} \\ $$
Question Number 90596 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\:\mathrm{sin}\left(\mathrm{28}\right)\:\:=\:\:\mathrm{a}\:\:\:\:\mathrm{and}\:\:\:\mathrm{cos}\left(\mathrm{32}\right)\:\:=\:\:\mathrm{b} \\ $$$$\mathrm{Find}\:\:\left(\mathrm{i}\right)\:\:\mathrm{cos}\left(\mathrm{28}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{ii}\right)\:\mathrm{cos}\left(\mathrm{64}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{iii}\right)\:\mathrm{sin}\left(\mathrm{4}\right) \\ $$
Question Number 90594 Answers: 0 Comments: 3
Question Number 90592 Answers: 0 Comments: 3
$$\int_{\mathrm{0}} ^{\sqrt{{arccos}\left(\frac{−\mathrm{2}\phi}{\pi}+\mathrm{1}\right)}} {x}\:{sin}\left({x}^{\mathrm{2}} \right)\:{dx} \\ $$
Question Number 90590 Answers: 1 Comments: 2
Question Number 90589 Answers: 0 Comments: 3
$$\int\frac{\mathrm{1}}{{x}+\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{dx} \\ $$
Question Number 90588 Answers: 1 Comments: 0
$$\int\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{6}\:\:}}{dx} \\ $$
Question Number 90575 Answers: 0 Comments: 0
$$\:\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}}: \\ $$$$\:\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{y}}_{\mathrm{3}} +\left(\mathrm{1}−\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} \right)\boldsymbol{\mathrm{y}}_{\mathrm{2}} −\mathrm{8}\boldsymbol{\mathrm{x}}\:_{\:} \boldsymbol{\mathrm{y}}_{\mathrm{1}} −\mathrm{4}\boldsymbol{\mathrm{y}}=\:\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} \\ $$
Question Number 90574 Answers: 0 Comments: 2
$$\:\boldsymbol{\mathrm{Use}}\:\boldsymbol{\mathrm{gamma}}\:\boldsymbol{\mathrm{function}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{prove}} \\ $$$$\:\:\left(\mathrm{i}\right)\:.\:\:\int_{\mathrm{0}} ^{\:\:\frac{\boldsymbol{\pi}}{\mathrm{8}}} \:\boldsymbol{\mathrm{cos}}^{\mathrm{3}} \mathrm{4}\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{dx}}=\:\frac{\mathrm{1}}{\mathrm{6}}. \\ $$$$\:\:\left(\boldsymbol{\mathrm{ii}}\right).\:\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{6}}} \:\boldsymbol{\mathrm{cos}}^{\mathrm{4}} \mathrm{3}\boldsymbol{\theta}\:\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \mathrm{6}\boldsymbol{\theta}\:\boldsymbol{\mathrm{d}\theta}\:=\:\frac{\mathrm{5}\boldsymbol{\pi}}{\mathrm{192}}. \\ $$
Question Number 90570 Answers: 1 Comments: 1
$${find}\:{the}\:{sum}\:{of}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{3}^{{n}} } \\ $$
Question Number 90566 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{infinity}} \mathrm{Sin}^{\mathrm{4}} \mathrm{3x}/\mathrm{x}^{\mathrm{2}} \mathrm{dx} \\ $$
Question Number 90564 Answers: 0 Comments: 1
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{\left(^{\mathrm{3}} \sqrt{\mathrm{1}+{cos}\left(\mathrm{2}{x}\right)}−\left(^{\mathrm{3}} \sqrt{\mathrm{2}}\right)\right.}{{x}^{\mathrm{2}} {sin}\left(\mathrm{3}{x}\right)} \\ $$
Question Number 90562 Answers: 0 Comments: 2
$${prove}\:{that} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{n}\left(\mathrm{2}{n}−\mathrm{1}\right)}={ln}\mathrm{2} \\ $$
Question Number 90561 Answers: 0 Comments: 2
$${prove}\:{that} \\ $$$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Question Number 90557 Answers: 0 Comments: 7
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{enclose}\:\mathrm{by}\:\mathrm{the}\:\mathrm{line}\:\:\:\mathrm{y}\:\:=\:\:\mathrm{x}\:\:−\:\:\mathrm{1}\:\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{parabola}\:\:\:\mathrm{y}^{\mathrm{2}} \:\:=\:\:\mathrm{2x}\:\:+\:\:\mathrm{6} \\ $$
Question Number 90555 Answers: 1 Comments: 2
Question Number 90581 Answers: 1 Comments: 0
$${given}\:{that}\:\alpha\:{and}\:\beta\:{are}\:{roots}\:{of}\:\:{the}\:{equation}\: \\ $$$${a}\chi^{\mathrm{2}} +{b}\chi+{c}=\mathrm{0}.\:{show}\:{that}\:\lambda\mu{b}^{\mathrm{2}} ={ac}\left(\lambda+\mu\right)^{\mathrm{2}\:} \\ $$$${where}\:\frac{\alpha}{\beta}=\frac{\lambda}{\mu} \\ $$
Question Number 90550 Answers: 0 Comments: 3
$${x}^{\mathrm{4}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\:=\:\mathrm{527}\: \\ $$$$\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{4}\right)\:?\: \\ $$
Question Number 90544 Answers: 1 Comments: 0
$$\int\:\frac{{dx}}{\sqrt{\mathrm{2}−\mathrm{cos}\:{x}}} \\ $$
Question Number 90535 Answers: 1 Comments: 0
$$\mathrm{In}\:\mathrm{a}\:\mathrm{triangle}\:{ABC},\:{a}\left({b}\:\mathrm{cos}\:{C}−{c}\:\mathrm{cos}\:{B}\right)= \\ $$
Question Number 90531 Answers: 0 Comments: 2
$${Please}\:{help}\:{me}\:{to}\:{find}\:{the}\:{value} \\ $$$${of}\:\:\:'{n}' \\ $$$${C}_{\mathrm{8}} ^{{n}+\mathrm{3}} ={C}_{\mathrm{20}} ^{{n}+\mathrm{3}} \\ $$
Question Number 90520 Answers: 2 Comments: 1
Pg 1236 Pg 1237 Pg 1238 Pg 1239 Pg 1240 Pg 1241 Pg 1242 Pg 1243 Pg 1244 Pg 1245
Terms of Service
Privacy Policy
Contact: info@tinkutara.com