Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1241

Question Number 83654    Answers: 2   Comments: 1

solve this equation sin^2 x−sin^4 x=cos^2 x−cos^4 x

$$\mathrm{solve}\:\mathrm{this}\:\mathrm{equation}\: \\ $$$$\mathrm{sin}\:^{\mathrm{2}} {x}−\mathrm{sin}\:^{\mathrm{4}} {x}=\mathrm{cos}\:^{\mathrm{2}} {x}−\mathrm{cos}\:^{\mathrm{4}} {x} \\ $$

Question Number 83653    Answers: 2   Comments: 0

find range of function y= (4/((x^2 −4)))

$$\mathrm{find}\:\mathrm{range}\:\mathrm{of}\:\mathrm{function}\: \\ $$$$\mathrm{y}=\:\frac{\mathrm{4}}{\left({x}^{\mathrm{2}} −\mathrm{4}\right)} \\ $$

Question Number 83649    Answers: 1   Comments: 0

Question Number 83644    Answers: 0   Comments: 0

Question Number 83642    Answers: 0   Comments: 0

Find the surface area of the solid generated by the revolution of the cardioids r=a(1+cos θ) about the initial line.

$$ \\ $$$$\: \\ $$$$\mathfrak{Find}\:\mathfrak{the}\:\mathfrak{surface}\:\mathfrak{area}\:\mathfrak{of}\:\mathfrak{the}\:\mathfrak{solid}\:\mathfrak{generated} \\ $$$$\:\:\mathfrak{by}\:\mathfrak{the}\:\mathfrak{revolution}\:\mathfrak{of}\:\mathfrak{the}\:\mathfrak{cardioids}\:\mathfrak{r}=\mathfrak{a}\left(\mathrm{1}+\mathfrak{cos}\:\theta\right)\:\mathfrak{about}\:\mathfrak{the}\:\mathfrak{initial}\:\mathfrak{line}. \\ $$

Question Number 83637    Answers: 0   Comments: 0

Question Number 83639    Answers: 4   Comments: 0

Find the differential equations: (i) log((dy/dx))=ax+by (ii) x cos y dy=(x e^x log x +e^x )dx

$$ \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equations}}: \\ $$$$\:\:\:\left(\mathrm{i}\right)\:\mathrm{log}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)=\mathrm{ax}+\mathrm{by} \\ $$$$\:\:\:\left(\mathrm{ii}\right)\:\mathrm{x}\:\mathrm{cos}\:\mathrm{y}\:\mathrm{dy}=\left(\mathrm{x}\:\mathrm{e}^{\mathrm{x}} \mathrm{log}\:\mathrm{x}\:+\mathrm{e}^{\mathrm{x}} \right)\mathrm{dx} \\ $$$$ \\ $$

Question Number 83638    Answers: 1   Comments: 0

Question Number 83629    Answers: 1   Comments: 0

show that Σ_(n,k=0) ^∞ ((n! k!)/((n+k+2)!))=(π^2 /6)

$${show}\:{that} \\ $$$$\underset{{n},{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}!\:{k}!}{\left({n}+{k}+\mathrm{2}\right)!}=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$

Question Number 83619    Answers: 0   Comments: 0

Show that the differetial equation is a Sturm−Louville equation (x^(−1) y^1 )^1 +(4+λ)x^(−3) y=0, y(1)=0,y(ϱ^t )=0 Solve the equation to determine the eigenvalue and the corresponding eigen functions of the problem. Show also that the set of eigen function forms and orthogonal and orthonormal set. Thanks as usual.

$${Show}\:{that}\:{the}\:{differetial}\:{equation}\:{is}\:{a}\:{Sturm}−{Louville}\:{equation} \\ $$$$\left({x}^{−\mathrm{1}} {y}^{\mathrm{1}} \right)^{\mathrm{1}} +\left(\mathrm{4}+\lambda\right){x}^{−\mathrm{3}} {y}=\mathrm{0},\:\:{y}\left(\mathrm{1}\right)=\mathrm{0},{y}\left(\varrho^{{t}} \right)=\mathrm{0} \\ $$$${Solve}\:{the}\:{equation}\:{to}\:{determine}\:{the}\:{eigenvalue}\:{and}\:{the}\:{corresponding}\:{eigen}\:{functions}\:{of}\:{the}\:{problem}. \\ $$$${Show}\:{also}\:{that}\:{the}\:{set}\:{of}\:{eigen}\:{function}\:{forms}\:{and}\:{orthogonal}\:{and}\:{orthonormal}\:{set}. \\ $$$$ \\ $$$${Thanks}\:{as}\:{usual}. \\ $$

Question Number 83614    Answers: 1   Comments: 1

(3x−5)(3x+4)

$$\left(\mathrm{3}{x}−\mathrm{5}\right)\left(\mathrm{3}{x}+\mathrm{4}\right) \\ $$$$ \\ $$

Question Number 83610    Answers: 0   Comments: 2

(1/(x−1)) + (5/(6−3(√(6+x−x^2 )))) > (1/(1+∣x−1∣))

$$\frac{\mathrm{1}}{\mathrm{x}−\mathrm{1}}\:+\:\frac{\mathrm{5}}{\mathrm{6}−\mathrm{3}\sqrt{\mathrm{6}+\mathrm{x}−\mathrm{x}^{\mathrm{2}} }}\:>\:\frac{\mathrm{1}}{\mathrm{1}+\mid\mathrm{x}−\mathrm{1}\mid} \\ $$

Question Number 83608    Answers: 1   Comments: 4

((17+x))^(1/(4 )) + ((17−x))^(1/(4 )) = 2 find x

$$\sqrt[{\mathrm{4}\:\:}]{\mathrm{17}+\mathrm{x}}\:+\:\sqrt[{\mathrm{4}\:\:}]{\mathrm{17}−\mathrm{x}}\:=\:\mathrm{2}\: \\ $$$$\mathrm{find}\:\mathrm{x}\: \\ $$

Question Number 83606    Answers: 1   Comments: 0

a car drives at a speed of 120 km/hr it starts to brake at a road mark A and passes a road mark B at a speed of 60 km/hr. acceleration is constant. the distance AB is 4 km. (1) calculate the acceleration (2) calculate the time between A and B (3) there are n reflector posts between A and B. calculate the speed of the car at each of them (find a function for the speed depending on the distance traveled)

$$\mathrm{a}\:\mathrm{car}\:\mathrm{drives}\:\mathrm{at}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{120}\:\mathrm{km}/\mathrm{hr} \\ $$$$\mathrm{it}\:\mathrm{starts}\:\mathrm{to}\:\mathrm{brake}\:\mathrm{at}\:\mathrm{a}\:\mathrm{road}\:\mathrm{mark}\:{A}\:\mathrm{and} \\ $$$$\mathrm{passes}\:\mathrm{a}\:\mathrm{road}\:\mathrm{mark}\:{B}\:\mathrm{at}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{of} \\ $$$$\mathrm{60}\:\mathrm{km}/\mathrm{hr}.\:\mathrm{acceleration}\:\mathrm{is}\:\mathrm{constant}.\:\mathrm{the} \\ $$$$\mathrm{distance}\:{AB}\:\mathrm{is}\:\mathrm{4}\:\mathrm{km}. \\ $$$$\left(\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{acceleration} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{time}\:\mathrm{between}\:{A}\:\mathrm{and}\:{B} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{there}\:\mathrm{are}\:{n}\:\mathrm{reflector}\:\mathrm{posts}\:\mathrm{between}\:{A} \\ $$$$\:\:\:\:\:\:\:\mathrm{and}\:{B}.\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{car}\:\mathrm{at} \\ $$$$\:\:\:\:\:\:\:\mathrm{each}\:\mathrm{of}\:\mathrm{them}\:\left(\mathrm{find}\:\mathrm{a}\:\mathrm{function}\:\mathrm{for}\:\mathrm{the}\right. \\ $$$$\left.\:\:\:\:\:\:\:\mathrm{speed}\:\mathrm{depending}\:\mathrm{on}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{traveled}\right) \\ $$

Question Number 83604    Answers: 0   Comments: 7

need help. When typing with microsoft word i face some difficulties like when typing lim_(x→0) f(x) it turns to lim_(x→0) f(x) and Σ_(r=0) ^n a_n turns to Σ_(r=0) ^n a_n please how do i rectify this problem? and any suggestion on a better application to type my maths papers? thanks in advance.

$$\mathrm{need}\:\mathrm{help}.\:\mathrm{When}\:\mathrm{typing}\:\mathrm{with}\:\mathrm{microsoft}\:\mathrm{word} \\ $$$$\mathrm{i}\:\mathrm{face}\:\mathrm{some}\:\mathrm{difficulties}\:\mathrm{like}\:\mathrm{when}\:\mathrm{typing}\: \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left({x}\right)\:\mathrm{it}\:\mathrm{turns}\:\mathrm{to}\:\mathrm{lim}_{{x}\rightarrow\mathrm{0}} \:{f}\left({x}\right)\:\mathrm{and}\:\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{n}} \: \\ $$$$\mathrm{turns}\:\mathrm{to}\:\sum_{{r}=\mathrm{0}} ^{{n}} {a}_{{n}} \:\:\mathrm{please}\:\mathrm{how}\:\mathrm{do}\:\mathrm{i}\:\mathrm{rectify}\:\mathrm{this} \\ $$$$\mathrm{problem}?\:\mathrm{and}\:\mathrm{any}\:\mathrm{suggestion}\:\mathrm{on}\:\mathrm{a}\:\mathrm{better}\:\mathrm{application} \\ $$$$\mathrm{to}\:\mathrm{type}\:\mathrm{my}\:\mathrm{maths}\:\mathrm{papers}?\:\mathrm{thanks}\:\mathrm{in}\:\mathrm{advance}. \\ $$

Question Number 83603    Answers: 0   Comments: 4

∫ (dx/(1−2cos x))

$$\int\:\frac{\mathrm{dx}}{\mathrm{1}−\mathrm{2cos}\:\mathrm{x}} \\ $$

Question Number 83599    Answers: 0   Comments: 0

Question Number 83597    Answers: 0   Comments: 1

∫_0 ^2 (3x^2 −4x+2)dx

$$\int_{\mathrm{0}} ^{\mathrm{2}} \left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{2}\right){dx} \\ $$

Question Number 83591    Answers: 0   Comments: 1

3x^2 −x+(t^2 −4t+3) = 0 has a roots sin α and cos α. find (√(t^2 −4t+5))

$$\mathrm{3x}^{\mathrm{2}} −\mathrm{x}+\left(\mathrm{t}^{\mathrm{2}} −\mathrm{4t}+\mathrm{3}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{has}\:\mathrm{a}\:\mathrm{roots}\:\mathrm{sin}\:\alpha\:\mathrm{and}\:\mathrm{cos}\:\alpha. \\ $$$$\mathrm{find}\:\sqrt{\mathrm{t}^{\mathrm{2}} −\mathrm{4t}+\mathrm{5}} \\ $$

Question Number 83590    Answers: 0   Comments: 3

transform the ellipse (x^2 /a^2 )+(y^2 /b^2 )=1 to the polar equation r= ((a(1−e^2 ))/(1+ecosθ)) a: semimajor axis e: eccentricity

$${transform}\:{the}\:{ellipse}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:{to} \\ $$$${the}\:{polar}\:{equation}\:{r}=\:\frac{{a}\left(\mathrm{1}−{e}^{\mathrm{2}} \right)}{\mathrm{1}+{ecos}\theta} \\ $$$${a}:\:{semimajor}\:{axis} \\ $$$${e}:\:{eccentricity} \\ $$

Question Number 83587    Answers: 0   Comments: 2

lim_(x→0) ((3sin πx−sin 3πx)/x^3 )

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{3sin}\:\pi\mathrm{x}−\mathrm{sin}\:\mathrm{3}\pi\mathrm{x}}{\mathrm{x}^{\mathrm{3}} } \\ $$

Question Number 83582    Answers: 0   Comments: 0

Given A = 580^o find sin ((A/2)) in term sin (A)

$$\mathrm{Given}\:\mathrm{A}\:=\:\mathrm{580}^{\mathrm{o}} \\ $$$$\mathrm{find}\:\mathrm{sin}\:\left(\frac{\mathrm{A}}{\mathrm{2}}\right)\:\mathrm{in}\:\mathrm{term}\:\mathrm{sin}\:\left(\mathrm{A}\right) \\ $$

Question Number 83570    Answers: 2   Comments: 3

Find the locus of a point which moves such that its distance from the line y = 4 is a constant k.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{a}\:\mathrm{point}\:\mathrm{which}\:\mathrm{moves}\:\mathrm{such}\:\mathrm{that}\:\mathrm{its} \\ $$$$\mathrm{distance}\:\mathrm{from}\:\mathrm{the}\:\mathrm{line}\:\:\:\mathrm{y}\:\:=\:\:\mathrm{4}\:\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{constant}\:\:\:\mathrm{k}. \\ $$

Question Number 83569    Answers: 0   Comments: 1

calculate ∫_1 ^(+∞) (dx/(x^4 (3x−1)^5 ))

$${calculate}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{dx}}{{x}^{\mathrm{4}} \left(\mathrm{3}{x}−\mathrm{1}\right)^{\mathrm{5}} } \\ $$

Question Number 83565    Answers: 1   Comments: 4

Question Number 83559    Answers: 1   Comments: 1

  Pg 1236      Pg 1237      Pg 1238      Pg 1239      Pg 1240      Pg 1241      Pg 1242      Pg 1243      Pg 1244      Pg 1245   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com