Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1241

Question Number 89745    Answers: 0   Comments: 2

f(x) = f(x+((3π)/8)) , ∀x∈ R if ∫_0 ^(3π/8) f(x) dx = t , then ∫_π ^(5π/2) f(x−π) dx = A. 2t B. 3t C. 4t D. 6t E. 8t

$$\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{f}\left(\mathrm{x}+\frac{\mathrm{3}\pi}{\mathrm{8}}\right)\:,\:\forall\mathrm{x}\in\:\mathbb{R} \\ $$$$\mathrm{if}\:\underset{\mathrm{0}} {\overset{\mathrm{3}\pi/\mathrm{8}} {\int}}\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx}\:=\:\mathrm{t}\:,\:\mathrm{then}\: \\ $$$$\underset{\pi} {\overset{\mathrm{5}\pi/\mathrm{2}} {\int}}\mathrm{f}\left(\mathrm{x}−\pi\right)\:\mathrm{dx}\:=\: \\ $$$$\mathrm{A}.\:\mathrm{2t}\:\:\:\:\:\:\:\mathrm{B}.\:\mathrm{3t}\:\:\:\:\:\:\:\mathrm{C}.\:\mathrm{4t}\:\:\:\:\:\:\:\mathrm{D}.\:\mathrm{6t} \\ $$$$\mathrm{E}.\:\mathrm{8t}\: \\ $$

Question Number 89920    Answers: 0   Comments: 1

x=(1/(1+(1/(1+x)))) and y=(2/(2+(1/(1+y )))) find x+y

$${x}=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+{x}}}\:{and}\:{y}=\frac{\mathrm{2}}{\mathrm{2}+\frac{\mathrm{1}}{\mathrm{1}+{y}\:}}\:{find}\:{x}+{y} \\ $$

Question Number 89741    Answers: 0   Comments: 1

Question Number 89737    Answers: 0   Comments: 0

Question Number 89736    Answers: 0   Comments: 1

Question Number 89735    Answers: 0   Comments: 1

Question Number 89732    Answers: 0   Comments: 0

Question Number 89728    Answers: 1   Comments: 0

Find the area bounded by 3x+4y=12 and the coordinate axes?

$${Find}\:{the}\:{area}\:{bounded}\:{by}\:\mathrm{3}{x}+\mathrm{4}{y}=\mathrm{12} \\ $$$${and}\:{the}\:{coordinate}\:{axes}? \\ $$

Question Number 89726    Answers: 0   Comments: 0

∫_0 ^1 6(√(x/(x^2 +1))) dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{6}\sqrt{\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{1}}}\:{dx} \\ $$

Question Number 89719    Answers: 0   Comments: 0

find ∫_1 ^(+∞) ((arctan(ln(x)))/(4+x^2 ))dx

$${find}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{arctan}\left({ln}\left({x}\right)\right)}{\mathrm{4}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 89718    Answers: 0   Comments: 0

let f(x)=(√(2x+1))−(√(2x−1)) find f^((n)) by recurence

$${let}\:{f}\left({x}\right)=\sqrt{\mathrm{2}{x}+\mathrm{1}}−\sqrt{\mathrm{2}{x}−\mathrm{1}} \\ $$$${find}\:{f}^{\left({n}\right)} \:{by}\:{recurence} \\ $$

Question Number 89717    Answers: 1   Comments: 0

let f(x)=2x−(√(x−1)) find ∫ ((f^(−1) (x))/(f(x)))dx

$${let}\:\:{f}\left({x}\right)=\mathrm{2}{x}−\sqrt{{x}−\mathrm{1}} \\ $$$${find}\:\int\:\:\:\frac{{f}^{−\mathrm{1}} \left({x}\right)}{{f}\left({x}\right)}{dx}\:\: \\ $$

Question Number 89716    Answers: 0   Comments: 0

calculate A_n =∫_0 ^∞ e^(−n[x]) sin((([x])/n))dx find nature of Σ n^2 A_n

$${calculate}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{n}\left[{x}\right]} \:{sin}\left(\frac{\left[{x}\right]}{{n}}\right){dx} \\ $$$${find}\:{nature}\:{of}\:\Sigma\:{n}^{\mathrm{2}} \:{A}_{{n}} \\ $$

Question Number 89714    Answers: 1   Comments: 1

calculate ∫_0 ^∞ (dx/((1+(√(2+x^2 )))^2 ))

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left(\mathrm{1}+\sqrt{\mathrm{2}+{x}^{\mathrm{2}} }\right)^{\mathrm{2}} } \\ $$

Question Number 89712    Answers: 0   Comments: 1

Question Number 89702    Answers: 1   Comments: 0

3^(2t+1) +3^(t+2) =((10)/3)

$$\mathrm{3}^{\mathrm{2}{t}+\mathrm{1}} +\mathrm{3}^{{t}+\mathrm{2}} =\frac{\mathrm{10}}{\mathrm{3}} \\ $$

Question Number 89687    Answers: 1   Comments: 3

x^3 +x−16=0

$${x}^{\mathrm{3}} +{x}−\mathrm{16}=\mathrm{0} \\ $$

Question Number 89698    Answers: 1   Comments: 4

hi everyone what is the definition of the tangent straight line to the curve without relying to the derivitve because the derivative is the slope and thanx for all

$${hi}\:{everyone} \\ $$$${what}\:{is}\:{the}\:{definition}\:{of}\:{the}\:{tangent} \\ $$$${straight}\:{line}\:{to}\:{the}\:{curve}\:{without}\:{relying} \\ $$$${to}\:\:{the}\:{derivitve}\: \\ $$$${because}\:{the}\:{derivative}\:{is}\:{the}\:{slope} \\ $$$${and}\:{thanx}\:{for}\:{all} \\ $$

Question Number 89668    Answers: 1   Comments: 1

what is the first three smallest positive integer that leaves a reminder of 1. when divided by 3 and 5 qnd 7?

$${what}\:{is}\:{the}\:{first}\:{three}\:{smallest}\:{positive}\: \\ $$$${integer}\:{that}\:{leaves}\:{a}\:{reminder}\:{of}\:\mathrm{1}.\:{when} \\ $$$${divided}\:{by}\:\mathrm{3}\:{and}\:\mathrm{5}\:{qnd}\:\mathrm{7}? \\ $$

Question Number 89666    Answers: 0   Comments: 0

tentukan solusi umum dari persamaan diferensial parsial berikut ini 7u_x +3u_y +u=x+y

$${tentukan}\:{solusi}\:{umum}\:{dari}\:{persamaan}\:{diferensial}\:{parsial}\:{berikut}\:{ini}\:\mathrm{7}{u}_{{x}} +\mathrm{3}{u}_{{y}} +{u}={x}+{y} \\ $$

Question Number 89662    Answers: 1   Comments: 0

Given that sin A=(1/2) and sin C=((√3)/2) without u using calculator solve a) tan (A+C) b) cos(A−C)

$${Given}\:{that}\:\mathrm{sin}\:{A}=\frac{\mathrm{1}}{\mathrm{2}}\:{and}\:\mathrm{sin}\:{C}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:{without}\:{u} \\ $$$${using}\:{calculator}\:{solve} \\ $$$$\left.{a}\right)\:\mathrm{tan}\:\left({A}+{C}\right) \\ $$$$\left.{b}\right)\:{cos}\left({A}−{C}\right) \\ $$

Question Number 89661    Answers: 0   Comments: 3

The Area of the triangle is 9x^2 −12x+4. compute its perimeter?

$${The}\:{Area}\:{of}\:{the}\:{triangle}\:{is}\:\mathrm{9}{x}^{\mathrm{2}} \:−\mathrm{12}{x}+\mathrm{4}. \\ $$$${compute}\:{its}\:{perimeter}? \\ $$

Question Number 89660    Answers: 1   Comments: 3

When rolling 2 dice what is the probability your not getting 2?

$${When}\:{rolling}\:\mathrm{2}\:{dice}\:{what}\:{is}\:{the}\:{probability} \\ $$$${your}\:{not}\:{getting}\:\mathrm{2}? \\ $$

Question Number 89658    Answers: 0   Comments: 4

Question Number 89653    Answers: 1   Comments: 4

Question Number 89652    Answers: 0   Comments: 0

If (y(x−y))^2 = x and ∫ (dx/((x−3y))) = ((m/n)) log [ (x−y)^2 −1] then m+2n = A.1 B. 3 C. 5 D.7

$$\mathrm{If}\:\left({y}\left({x}−{y}\right)\right)^{\mathrm{2}} \:=\:{x}\:{and}\: \\ $$$$\int\:\frac{{dx}}{\left({x}−\mathrm{3}{y}\right)}\:=\:\left(\frac{{m}}{{n}}\right)\:\mathrm{log}\:\left[\:\left({x}−{y}\right)^{\mathrm{2}} −\mathrm{1}\right] \\ $$$${then}\:{m}+\mathrm{2}{n}\:=\: \\ $$$${A}.\mathrm{1}\:\:\:\:\:{B}.\:\mathrm{3}\:\:\:\:\:\:\:\:{C}.\:\mathrm{5}\:\:\:\:\:\:\:\:\:{D}.\mathrm{7} \\ $$

  Pg 1236      Pg 1237      Pg 1238      Pg 1239      Pg 1240      Pg 1241      Pg 1242      Pg 1243      Pg 1244      Pg 1245   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com