Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 124

Question Number 209220    Answers: 1   Comments: 0

Question Number 209211    Answers: 0   Comments: 1

Question Number 209206    Answers: 0   Comments: 2

2 YouTube channels I think you might find useful.

$$\mathrm{2}\:\mathrm{YouTube}\:\mathrm{channels}\:\mathrm{I}\:\mathrm{think}\:\mathrm{you}\:\mathrm{might} \\ $$$$\mathrm{find}\:\mathrm{useful}. \\ $$

Question Number 209193    Answers: 0   Comments: 1

A pin 6cm high is placed in front of a diverging lens of focal length 15cm, Calculate the position of the image formed

A pin 6cm high is placed in front of a diverging lens of focal length 15cm, Calculate the position of the image formed

Question Number 209187    Answers: 3   Comments: 0

:: α , β and γ are roots of the following equation . Find the value of ” F ” : Equation : x^( 3) −2x −1=0 F := α^( 5) + β^( 5) + γ^( 5)

$$ \\ $$$$\:\:\:::\:\:\:\alpha\:,\:\beta\:\:{and}\:\:\gamma\:\:{are}\:{roots}\:{of}\:{the} \\ $$$$\:\:\:\:\:{following}\:\:{equation}\:.\:{Find}\:{the} \\ $$$$\:\:\:\:\:{value}\:\:{of}\:\:\:''\:\:\mathrm{F}\:\:''\::\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{E}{quation}\::\:\:\:\:\:\:{x}^{\:\mathrm{3}} \:−\mathrm{2}{x}\:\:−\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{F}\::=\:\alpha^{\:\mathrm{5}} \:+\:\beta^{\:\mathrm{5}} \:+\:\gamma^{\:\mathrm{5}} \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$

Question Number 209185    Answers: 0   Comments: 0

Question Number 209217    Answers: 2   Comments: 0

calculate : I= ∫_(0 ) ^( ∞) (( tan^( −1) (x))/((1 + x^( 2) )^( 2) )) dx = ?

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{calculate}}\:: \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}=\:\int_{\mathrm{0}\:} ^{\:\infty} \frac{\:{tan}^{\:−\mathrm{1}} \left({x}\right)}{\left(\mathrm{1}\:+\:{x}^{\:\mathrm{2}} \right)^{\:\mathrm{2}} }\:{dx}\:=\:?\:\:\:\:\: \\ $$$$ \\ $$

Question Number 209167    Answers: 2   Comments: 0

please convert 2531_((5000) ) to base 5002. thanks.

$${please}\:{convert}\:\:\mathrm{2531}_{\left(\mathrm{5000}\right)\:} {to}\:\:{base}\:\mathrm{5002}.\:\:{thanks}.\:\: \\ $$

Question Number 209166    Answers: 1   Comments: 0

Question Number 209162    Answers: 2   Comments: 0

Cyclic quadrilateral ABCD is inscribed in circle. Point S is intersection of diagonals AC and BD (S is not center of the circle). If AB=BC=6 and BS=4, what is length of BD?

$$ \\ $$Cyclic quadrilateral ABCD is inscribed in circle. Point S is intersection of diagonals AC and BD (S is not center of the circle). If AB=BC=6 and BS=4, what is length of BD?

Question Number 209161    Answers: 3   Comments: 2

Question Number 209137    Answers: 2   Comments: 0

Question Number 209131    Answers: 1   Comments: 0

prove : curve { ((x(t)=((a+r.cos(t))/(a^2 +r^2 +2ar.cos(t))))),((y(t)=((r.sin(t))/(a^2 +r^2 +2ar.cos(t))))) :} 0≤t≤2π is circle , find center & radius

$${prove}\:: \\ $$$${curve}\:\begin{cases}{{x}\left({t}\right)=\frac{{a}+{r}.{cos}\left({t}\right)}{{a}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}{ar}.{cos}\left({t}\right)}}\\{{y}\left({t}\right)=\frac{{r}.{sin}\left({t}\right)}{{a}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}{ar}.{cos}\left({t}\right)}}\end{cases}\:\:\:\:\mathrm{0}\leqslant{t}\leqslant\mathrm{2}\pi \\ $$$${is}\:{circle}\:,\:{find}\:{center}\:\&\:{radius} \\ $$

Question Number 209129    Answers: 1   Comments: 0

Question Number 209128    Answers: 2   Comments: 0

Question Number 209127    Answers: 1   Comments: 0

Question Number 209126    Answers: 2   Comments: 0

Question Number 209125    Answers: 3   Comments: 0

Question Number 209124    Answers: 3   Comments: 0

Question Number 209123    Answers: 2   Comments: 0

Question Number 209122    Answers: 1   Comments: 0

Question Number 209121    Answers: 1   Comments: 0

Question Number 209118    Answers: 0   Comments: 0

Question Number 209117    Answers: 0   Comments: 0

Question Number 209116    Answers: 1   Comments: 0

Question Number 209115    Answers: 0   Comments: 0

  Pg 119      Pg 120      Pg 121      Pg 122      Pg 123      Pg 124      Pg 125      Pg 126      Pg 127      Pg 128   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com