Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 124

Question Number 211405    Answers: 0   Comments: 1

Question Number 211402    Answers: 1   Comments: 0

Question Number 211400    Answers: 3   Comments: 0

∫_0 ^1 ((x^3 −3x^2 +3x−1)/(x^4 +4x^3 +6x^2 +4x+1))dx

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{3}} +\mathrm{6}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{1}}{dx} \\ $$$$ \\ $$

Question Number 211399    Answers: 0   Comments: 1

∫(dx/((1+x^4 )(√(1+x^4 −x^2 ))))

$$\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{4}} \right)\sqrt{\mathrm{1}+{x}^{\mathrm{4}} −{x}^{\mathrm{2}} }} \\ $$$$ \\ $$

Question Number 211398    Answers: 1   Comments: 0

Question Number 211393    Answers: 3   Comments: 1

Question Number 211392    Answers: 1   Comments: 0

△ABC. cos C=((sin A + cos A)/2)=((sin B + cos B)/2). Find cos C.

$$\bigtriangleup{ABC}.\:\mathrm{cos}\:{C}=\frac{\mathrm{sin}\:{A}\:+\:\mathrm{cos}\:{A}}{\mathrm{2}}=\frac{\mathrm{sin}\:{B}\:+\:\mathrm{cos}\:{B}}{\mathrm{2}}. \\ $$$$\mathrm{Find}\:\mathrm{cos}\:{C}. \\ $$

Question Number 211383    Answers: 2   Comments: 1

Question Number 211381    Answers: 2   Comments: 1

Question Number 211377    Answers: 0   Comments: 0

The irrational number ^3 (√(^3 (√2)−1)) is written as^3 (√p) +^3 (√q) +^3 (√r) what is p, q, r ?

$$\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{irrational}}\:\boldsymbol{\mathrm{number}}\: \\ $$$$\:^{\mathrm{3}} \sqrt{\:^{\mathrm{3}} \sqrt{\mathrm{2}}−\mathrm{1}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{written}}\:\boldsymbol{\mathrm{as}}\:^{\mathrm{3}} \sqrt{\boldsymbol{\mathrm{p}}}\:+\:^{\mathrm{3}} \sqrt{\boldsymbol{\mathrm{q}}}\:+\:^{\mathrm{3}} \sqrt{\boldsymbol{\mathrm{r}}}\: \\ $$$$\boldsymbol{\mathrm{what}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{p}},\:\boldsymbol{\mathrm{q}},\:\boldsymbol{\mathrm{r}}\:? \\ $$

Question Number 211374    Answers: 0   Comments: 0

Evaluate: Σ_(k=1) ^n (((sin (2^(k+4) θ))/(sin (2^k θ)))).

$$\mathrm{Evaluate}:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{sin}\:\left(\mathrm{2}^{{k}+\mathrm{4}} \theta\right)}{\mathrm{sin}\:\left(\mathrm{2}^{\mathrm{k}} \theta\right)}\right). \\ $$

Question Number 211373    Answers: 3   Comments: 0

Question Number 211365    Answers: 2   Comments: 0

Question Number 222365    Answers: 1   Comments: 0

Prove ∮_( ∂S) E^→ ∙dS^→ =(ρ_(enc) /𝛜_0 ) E^→ =(r^→ /r^3 )

$$\mathrm{Prove} \\ $$$$\oint_{\:\partial\mathcal{S}} \:\overset{\rightarrow} {\boldsymbol{\mathrm{E}}}\centerdot\mathrm{d}\overset{\rightarrow} {\mathcal{S}}=\frac{\rho_{\mathrm{enc}} }{\boldsymbol{\varepsilon}_{\mathrm{0}} } \\ $$$$\overset{\rightarrow} {\boldsymbol{\mathrm{E}}}=\frac{\overset{\rightarrow} {\boldsymbol{\mathrm{r}}}}{\boldsymbol{\mathrm{r}}^{\mathrm{3}} }\: \\ $$

Question Number 222359    Answers: 0   Comments: 1

(1) [ax^3 +bx^2 +cx+d]_x ′ (2) [x(x−a)^2 ]_x ′ (3) [(x^2 −x)(x^2 −4)]_x ′ (4) [(x+2)(x−5)(x−1)]_x ′

$$\left(\mathrm{1}\right)\:\left[{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}\right]_{{x}} ' \\ $$$$\left(\mathrm{2}\right)\:\left[{x}\left({x}−{a}\right)^{\mathrm{2}} \right]_{{x}} ' \\ $$$$\left(\mathrm{3}\right)\:\left[\left({x}^{\mathrm{2}} −{x}\right)\left({x}^{\mathrm{2}} −\mathrm{4}\right)\right]_{{x}} ' \\ $$$$\left(\mathrm{4}\right)\:\left[\left({x}+\mathrm{2}\right)\left({x}−\mathrm{5}\right)\left({x}−\mathrm{1}\right)\right]_{{x}} ' \\ $$

Question Number 211345    Answers: 0   Comments: 1

Evaluer: (R/(r1+r2))

$$\mathrm{E}\boldsymbol{\mathrm{valuer}}:\:\:\frac{\boldsymbol{\mathrm{R}}}{\boldsymbol{\mathrm{r}}\mathrm{1}+\boldsymbol{\mathrm{r}}\mathrm{2}} \\ $$

Question Number 211344    Answers: 1   Comments: 0

find ∫(dx/(sin^3 (x) cos^5 (x))) .dx

$$\:\:\:{find}\:\int\frac{\boldsymbol{{dx}}}{\boldsymbol{{sin}}^{\mathrm{3}} \left(\boldsymbol{{x}}\right)\:\boldsymbol{{cos}}^{\mathrm{5}} \left(\boldsymbol{{x}}\right)}\:.\boldsymbol{{dx}}\: \\ $$

Question Number 211340    Answers: 2   Comments: 1

Question Number 211331    Answers: 2   Comments: 0

x=(((√6)+2+(√3)+(√2))/( (√6)+(√3)−2−(√2))) y=(((√6)−(√3)−2+(√2))/( (√6)−(√3)+2−(√2))) x^5 −y^5 =?

$$\:\:\:\:\:\mathrm{x}=\frac{\sqrt{\mathrm{6}}+\mathrm{2}+\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{6}}+\sqrt{\mathrm{3}}−\mathrm{2}−\sqrt{\mathrm{2}}} \\ $$$$\:\:\:\:\mathrm{y}=\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{3}}−\mathrm{2}+\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{6}}−\sqrt{\mathrm{3}}+\mathrm{2}−\sqrt{\mathrm{2}}} \\ $$$$\:\:\:\mathrm{x}^{\mathrm{5}} −\mathrm{y}^{\mathrm{5}} \:=?\: \\ $$

Question Number 211330    Answers: 1   Comments: 0

Question Number 211323    Answers: 2   Comments: 1

Question Number 211321    Answers: 1   Comments: 0

sec θ + tan θ =p (p>1) then ((cosec θ+1)/(cosec θ−1)) =?

$$\:\:\: \mathrm{sec}\:\theta\:+\:\mathrm{tan}\:\theta\:=\mathrm{p}\:\left(\mathrm{p}>\mathrm{1}\right) \\ $$$$\:\:\mathrm{then}\:\frac{\mathrm{cosec}\:\theta+\mathrm{1}}{\mathrm{cosec}\:\theta−\mathrm{1}}\:=? \\ $$

Question Number 211311    Answers: 1   Comments: 0

Dterminer le nombre total des nombres de (3 chiffres)qui sont impair( et) divisibles par 9 compris entre 100 et 500.? formule si c est possible?

$$\boldsymbol{\mathrm{Dterminer}}\:\boldsymbol{\mathrm{le}}\:\boldsymbol{\mathrm{nombre}}\:\boldsymbol{\mathrm{total}}\:\:\boldsymbol{\mathrm{des}}\:\boldsymbol{\mathrm{nombres}}\: \\ $$$$\boldsymbol{\mathrm{de}}\:\left(\mathrm{3}\:\boldsymbol{\mathrm{chiffres}}\right)\boldsymbol{\mathrm{qui}}\:\boldsymbol{\mathrm{sont}}\:\boldsymbol{\mathrm{impair}}\left(\:\boldsymbol{\mathrm{et}}\right)\:\boldsymbol{\mathrm{divisibles}}\: \\ $$$$\boldsymbol{\mathrm{par}}\:\mathrm{9}\:\:\:\boldsymbol{\mathrm{compris}}\:\boldsymbol{\mathrm{entre}}\:\mathrm{100}\:\boldsymbol{\mathrm{et}}\:\mathrm{500}.? \\ $$$$\boldsymbol{\mathrm{formule}}\:\boldsymbol{\mathrm{si}}\:\boldsymbol{\mathrm{c}}\:\boldsymbol{\mathrm{est}}\:\boldsymbol{\mathrm{possible}}? \\ $$$$ \\ $$

Question Number 211310    Answers: 1   Comments: 0

Find: LCD(2^(100) − 1 ; 2^(120) − 1) = ?

$$\mathrm{Find}: \\ $$$$\mathrm{LCD}\left(\mathrm{2}^{\mathrm{100}} \:−\:\mathrm{1}\:\:;\:\:\mathrm{2}^{\mathrm{120}} \:−\:\mathrm{1}\right)\:=\:? \\ $$

Question Number 211315    Answers: 0   Comments: 0

does anyone know if charpit′s method for solving PDE can be used to solve second order pde? Also is it possible to reduce second order PDE to first order?

$$\mathrm{does}\:\mathrm{anyone}\:\mathrm{know}\:\mathrm{if}\:\mathrm{charpit}'\mathrm{s}\:\mathrm{method}\:\mathrm{for}\:\mathrm{solving}\: \\ $$$$\mathrm{PDE}\:\mathrm{can}\:\mathrm{be}\:\mathrm{used}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{second}\:\mathrm{order}\:\mathrm{pde}? \\ $$$$\mathrm{Also}\:\mathrm{is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{reduce}\:\mathrm{second}\:\mathrm{order}\:\mathrm{PDE}\:\mathrm{to}\:\mathrm{first}\:\mathrm{order}? \\ $$

Question Number 211370    Answers: 1   Comments: 0

F(0)=0 F(1)=1 F(n+1)=F(n)+F(n−1) prove: (1/(89))=Σ_(i=1) ^(+∞) 10^(−i) F(i−1)

$${F}\left(\mathrm{0}\right)=\mathrm{0}\:\:\:\:\:\:\:{F}\left(\mathrm{1}\right)=\mathrm{1}\:\:\:\:{F}\left({n}+\mathrm{1}\right)={F}\left({n}\right)+{F}\left({n}−\mathrm{1}\right) \\ $$$${prove}: \\ $$$$\frac{\mathrm{1}}{\mathrm{89}}=\underset{{i}=\mathrm{1}} {\overset{+\infty} {\sum}}\mathrm{10}^{−{i}} {F}\left({i}−\mathrm{1}\right) \\ $$

  Pg 119      Pg 120      Pg 121      Pg 122      Pg 123      Pg 124      Pg 125      Pg 126      Pg 127      Pg 128   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com