Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 124
Question Number 209220 Answers: 1 Comments: 0
Question Number 209211 Answers: 0 Comments: 1
Question Number 209206 Answers: 0 Comments: 2
$$\mathrm{2}\:\mathrm{YouTube}\:\mathrm{channels}\:\mathrm{I}\:\mathrm{think}\:\mathrm{you}\:\mathrm{might} \\ $$$$\mathrm{find}\:\mathrm{useful}. \\ $$
Question Number 209193 Answers: 0 Comments: 1
A pin 6cm high is placed in front of a diverging lens of focal length 15cm, Calculate the position of the image formed
Question Number 209187 Answers: 3 Comments: 0
$$ \\ $$$$\:\:\:::\:\:\:\alpha\:,\:\beta\:\:{and}\:\:\gamma\:\:{are}\:{roots}\:{of}\:{the} \\ $$$$\:\:\:\:\:{following}\:\:{equation}\:.\:{Find}\:{the} \\ $$$$\:\:\:\:\:{value}\:\:{of}\:\:\:''\:\:\mathrm{F}\:\:''\::\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{E}{quation}\::\:\:\:\:\:\:{x}^{\:\mathrm{3}} \:−\mathrm{2}{x}\:\:−\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{F}\::=\:\alpha^{\:\mathrm{5}} \:+\:\beta^{\:\mathrm{5}} \:+\:\gamma^{\:\mathrm{5}} \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$
Question Number 209185 Answers: 0 Comments: 0
Question Number 209217 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{calculate}}\:: \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}=\:\int_{\mathrm{0}\:} ^{\:\infty} \frac{\:{tan}^{\:−\mathrm{1}} \left({x}\right)}{\left(\mathrm{1}\:+\:{x}^{\:\mathrm{2}} \right)^{\:\mathrm{2}} }\:{dx}\:=\:?\:\:\:\:\: \\ $$$$ \\ $$
Question Number 209167 Answers: 2 Comments: 0
$${please}\:{convert}\:\:\mathrm{2531}_{\left(\mathrm{5000}\right)\:} {to}\:\:{base}\:\mathrm{5002}.\:\:{thanks}.\:\: \\ $$
Question Number 209166 Answers: 1 Comments: 0
Question Number 209162 Answers: 2 Comments: 0
$$ \\ $$Cyclic quadrilateral ABCD is inscribed in circle. Point S is intersection of diagonals AC and BD (S is not center of the circle). If AB=BC=6 and BS=4, what is length of BD?
Question Number 209161 Answers: 3 Comments: 2
Question Number 209137 Answers: 2 Comments: 0
Question Number 209131 Answers: 1 Comments: 0
$${prove}\:: \\ $$$${curve}\:\begin{cases}{{x}\left({t}\right)=\frac{{a}+{r}.{cos}\left({t}\right)}{{a}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}{ar}.{cos}\left({t}\right)}}\\{{y}\left({t}\right)=\frac{{r}.{sin}\left({t}\right)}{{a}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}{ar}.{cos}\left({t}\right)}}\end{cases}\:\:\:\:\mathrm{0}\leqslant{t}\leqslant\mathrm{2}\pi \\ $$$${is}\:{circle}\:,\:{find}\:{center}\:\&\:{radius} \\ $$
Question Number 209129 Answers: 1 Comments: 0
Question Number 209128 Answers: 2 Comments: 0
Question Number 209127 Answers: 1 Comments: 0
Question Number 209126 Answers: 2 Comments: 0
Question Number 209125 Answers: 3 Comments: 0
Question Number 209124 Answers: 3 Comments: 0
Question Number 209123 Answers: 2 Comments: 0
Question Number 209122 Answers: 1 Comments: 0
Question Number 209121 Answers: 1 Comments: 0
Question Number 209118 Answers: 0 Comments: 0
Question Number 209117 Answers: 0 Comments: 0
Question Number 209116 Answers: 1 Comments: 0
Question Number 209115 Answers: 0 Comments: 0
Pg 119 Pg 120 Pg 121 Pg 122 Pg 123 Pg 124 Pg 125 Pg 126 Pg 127 Pg 128
Terms of Service
Privacy Policy
Contact: info@tinkutara.com