Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 124

Question Number 209980    Answers: 0   Comments: 7

determiner h ? CD=20 AB=30 h1=25

$$\mathrm{determiner}\:\mathrm{h}\:? \\ $$$$\boldsymbol{\mathrm{CD}}=\mathrm{20}\:\:\:\:\boldsymbol{\mathrm{AB}}=\mathrm{30} \\ $$$$\boldsymbol{\mathrm{h}}\mathrm{1}=\mathrm{25} \\ $$$$ \\ $$

Question Number 209976    Answers: 0   Comments: 1

Question Number 209975    Answers: 1   Comments: 0

Question Number 209974    Answers: 0   Comments: 0

Question Number 209972    Answers: 1   Comments: 0

Question Number 209965    Answers: 1   Comments: 0

Question Number 209960    Answers: 2   Comments: 1

Determiner Aire (ABH) AH⊥CE

$$\mathrm{Determiner}\:\:\mathrm{Aire}\:\left(\boldsymbol{\mathrm{ABH}}\right) \\ $$$$\:\:\:\mathrm{AH}\bot\mathrm{CE} \\ $$

Question Number 209956    Answers: 3   Comments: 0

Find the maximum value of 7cosA + 24sinA + 32

Find the maximum value of 7cosA + 24sinA + 32

Question Number 209944    Answers: 0   Comments: 1

Question Number 209937    Answers: 1   Comments: 0

Question Number 209932    Answers: 4   Comments: 0

Question Number 209929    Answers: 0   Comments: 0

Question Number 209926    Answers: 1   Comments: 3

lim_(n→∞) (1/(3n+1))+(1/(3n+2))+...+(1/(4n))

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{3}{n}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{3}{n}+\mathrm{2}}+...+\frac{\mathrm{1}}{\mathrm{4}{n}} \\ $$

Question Number 209924    Answers: 0   Comments: 0

If f(x)=(x!)∙(x!!)∙(x!!!) find (d/dx)(f(x))=?

$$\boldsymbol{{If}}\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\left(\boldsymbol{{x}}!\right)\centerdot\left(\boldsymbol{{x}}!!\right)\centerdot\left(\boldsymbol{{x}}!!!\right)\:\: \\ $$$$\boldsymbol{{find}}\:\:\frac{\boldsymbol{{d}}}{\boldsymbol{{dx}}}\left(\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\right)=? \\ $$

Question Number 209923    Answers: 1   Comments: 0

Solve: ∫((sin(x!))/(x!))dx

$$\boldsymbol{{Solve}}:\:\int\frac{\boldsymbol{{sin}}\left(\boldsymbol{{x}}!\right)}{\boldsymbol{{x}}!}\boldsymbol{{dx}} \\ $$

Question Number 209918    Answers: 1   Comments: 0

Find: ∫_0 ^( ∞) (({x}^([x]) )/([x] + 1)) dx = ? {x} → fractional part [x] → full part

$$\mathrm{Find}:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\left\{\mathrm{x}\right\}^{\left[\boldsymbol{\mathrm{x}}\right]} }{\left[\mathrm{x}\right]\:+\:\mathrm{1}}\:\mathrm{dx}\:=\:? \\ $$$$\left\{\mathrm{x}\right\}\:\rightarrow\:\mathrm{fractional}\:\mathrm{part} \\ $$$$\left[\mathrm{x}\right]\:\:\:\rightarrow\:\mathrm{full}\:\mathrm{part} \\ $$

Question Number 209913    Answers: 4   Comments: 1

Question Number 209911    Answers: 0   Comments: 4

Question Number 209892    Answers: 2   Comments: 0

find 40^(71) mod 437. thanks its 67 but how?

$${find}\:\:\mathrm{40}^{\mathrm{71}} {mod}\:\mathrm{437}.\:\:\:{thanks} \\ $$$${its}\:\mathrm{67}\:{but}\:{how}? \\ $$

Question Number 209889    Answers: 3   Comments: 0

Question Number 209888    Answers: 0   Comments: 0

n_0 =((Z^2 .p.(1−p))/C^(2m) )

$${n}_{\mathrm{0}} =\frac{{Z}^{\mathrm{2}} .{p}.\left(\mathrm{1}−{p}\right)}{{C}^{\mathrm{2}{m}} } \\ $$

Question Number 209886    Answers: 1   Comments: 1

Question Number 209883    Answers: 1   Comments: 2

Question Number 209881    Answers: 0   Comments: 2

Let n be positive integer satisfies a_n = 1 + (√(1/n)) − (√(1/(n+1))) − (√((1/n) − (1/(n+1)))) Find the value of a_1 a_2 a_3 …a_(99)

$$\mathrm{Let}\:{n}\:\mathrm{be}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{satisfies} \\ $$$$ \\ $$$${a}_{{n}} \:=\:\mathrm{1}\:+\:\sqrt{\frac{\mathrm{1}}{{n}}}\:−\:\sqrt{\frac{\mathrm{1}}{{n}+\mathrm{1}}}\:−\:\sqrt{\frac{\mathrm{1}}{{n}}\:−\:\frac{\mathrm{1}}{{n}+\mathrm{1}}} \\ $$$$ \\ $$$$\mathrm{Find}\:\:\mathrm{the}\:\:\mathrm{value}\:\:\mathrm{of}\: \\ $$$$ \\ $$$$\:\:\:{a}_{\mathrm{1}} {a}_{\mathrm{2}} {a}_{\mathrm{3}} \:\ldots{a}_{\mathrm{99}} \\ $$

Question Number 209880    Answers: 1   Comments: 0

Question Number 209876    Answers: 1   Comments: 0

1,6 = (((2x)^2 )/((3−2x)^2 ∙ (2−x))) find: x = ?

$$\mathrm{1},\mathrm{6}\:\:=\:\:\frac{\left(\mathrm{2x}\right)^{\mathrm{2}} }{\left(\mathrm{3}−\mathrm{2x}\right)^{\mathrm{2}} \:\centerdot\:\left(\mathrm{2}−\mathrm{x}\right)}\:\:\:\mathrm{find}:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$

  Pg 119      Pg 120      Pg 121      Pg 122      Pg 123      Pg 124      Pg 125      Pg 126      Pg 127      Pg 128   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com