Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 124

Question Number 210870    Answers: 0   Comments: 1

8x^2 − 13x + 11 = (2/x) + (1 + (3/x)) ((3x^2 −2))^(1/3) x = ?

$$\mathrm{8x}^{\mathrm{2}} \:−\:\mathrm{13x}\:+\:\mathrm{11}\:=\:\frac{\mathrm{2}}{\mathrm{x}}\:+\:\left(\mathrm{1}\:+\:\frac{\mathrm{3}}{\mathrm{x}}\right)\:\sqrt[{\mathrm{3}}]{\mathrm{3x}^{\mathrm{2}} −\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{x}}\:=\:? \\ $$

Question Number 210868    Answers: 1   Comments: 5

let p ,q be reals such that p>q>0 define the sequence {x_n } where x_1 = p+q and x_n = x_1 −((pq)/x_(n−1) ) for n≥2 for all n then x_n = ??

$$\mathrm{let}\:\mathrm{p}\:,\mathrm{q}\:\mathrm{be}\:\mathrm{reals}\:\mathrm{such}\:\mathrm{that}\:\mathrm{p}>\mathrm{q}>\mathrm{0}\:\mathrm{define} \\ $$$$\mathrm{the}\:\mathrm{sequence}\:\left\{\mathrm{x}_{\mathrm{n}} \right\}\:\mathrm{where}\:\mathrm{x}_{\mathrm{1}} =\:\mathrm{p}+\mathrm{q}\:\mathrm{and} \\ $$$$\mathrm{x}_{\mathrm{n}} \:=\:\mathrm{x}_{\mathrm{1}} −\frac{\mathrm{pq}}{\mathrm{x}_{\mathrm{n}−\mathrm{1}} }\:\mathrm{for}\:\mathrm{n}\geqslant\mathrm{2}\:\mathrm{for}\:\mathrm{all}\:\mathrm{n}\:\mathrm{then}\:\mathrm{x}_{\mathrm{n}} \:=\:?? \\ $$

Question Number 210858    Answers: 2   Comments: 0

Solve The Equation: (7x+1)(9x+1)(21x+1)(63x+1)= ((160)/(189))

$$\mathrm{Solve}\:\mathrm{The}\:\mathrm{Equation}: \\ $$$$\left(\mathrm{7x}+\mathrm{1}\right)\left(\mathrm{9x}+\mathrm{1}\right)\left(\mathrm{21x}+\mathrm{1}\right)\left(\mathrm{63x}+\mathrm{1}\right)=\:\frac{\mathrm{160}}{\mathrm{189}} \\ $$

Question Number 210855    Answers: 3   Comments: 0

Question Number 210843    Answers: 1   Comments: 0

Question Number 210842    Answers: 1   Comments: 0

Question Number 210851    Answers: 1   Comments: 1

Question Number 210840    Answers: 1   Comments: 0

Prove that if x, y are rational numbers satisfying the equation x^5 + y^5 = 2(x^2)(y^2) then 1 - xy is the square of rational number

$$ \\ $$Prove that if x, y are rational numbers satisfying the equation x^5 + y^5 = 2(x^2)(y^2) then 1 - xy is the square of rational number

Question Number 210824    Answers: 0   Comments: 0

Question Number 210820    Answers: 2   Comments: 0

prove ∫_0 ^∞ ((arctan (√(x^2 +2)))/((x^2 +1)(√(x^2 +2)))) dx=(π^2 /(12))

$$\mathrm{prove} \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{\mathrm{arctan}\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}\:{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$

Question Number 210839    Answers: 0   Comments: 1

show that ∫_0 ^x e^(xt) e^(−t^2 ) dt=e^(x^2 /4) ∫^x _0 e^(−(t^2 /4))

$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\:\int_{\mathrm{0}} ^{\boldsymbol{\mathrm{x}}} \boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{xt}}} \boldsymbol{\mathrm{e}}^{−\mathrm{t}^{\mathrm{2}} } \boldsymbol{\mathrm{dt}}=\boldsymbol{\mathrm{e}}^{\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\mathrm{4}}} \underset{\mathrm{0}} {\int}^{\boldsymbol{\mathrm{x}}} \boldsymbol{\mathrm{e}}^{−\frac{\boldsymbol{\mathrm{t}}^{\mathrm{2}} }{\mathrm{4}}} \\ $$$$ \\ $$

Question Number 210836    Answers: 0   Comments: 0

Question Number 210816    Answers: 2   Comments: 1

Question Number 210832    Answers: 2   Comments: 1

If the probability of A solving a question is 1/2 and the probability of B solving the question is 2/3 then the probability of the question being solved is

$$ \\ $$If the probability of A solving a question is 1/2 and the probability of B solving the question is 2/3 then the probability of the question being solved is

Question Number 210809    Answers: 1   Comments: 4

Question Number 210807    Answers: 0   Comments: 0

Question Number 210789    Answers: 1   Comments: 0

Question Number 210788    Answers: 1   Comments: 0

s=Σ_(i=1) ^∞ 2^i 2s=s−1 s=1 ? how to explain it and how to judge which case can use this way

$${s}=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{2}^{{i}} \\ $$$$\mathrm{2}{s}={s}−\mathrm{1} \\ $$$${s}=\mathrm{1}\:? \\ $$$$\:{how}\:{to}\:{explain}\:{it} \\ $$$${and}\:{how}\:{to}\:{judge}\:{which}\:{case}\:{can}\:{use}\:{this}\:{way} \\ $$

Question Number 210787    Answers: 6   Comments: 0

{ (( If, D : x^2 +y^( 2) + z^( 2) ≤1)),(( ⇒∫∫_D^ ∫(( x^2 + 2y^( 2) )/(x^2 + 4y^2 +z^2 )) dxdydz=?)) :}

$$ \\ $$$$\:\begin{cases}{\:\:\mathrm{I}{f},\:\mathrm{D}\::\:{x}^{\mathrm{2}} \:+{y}^{\:\mathrm{2}} \:+\:{z}^{\:\mathrm{2}} \leqslant\mathrm{1}}\\{\:\Rightarrow\int\underset{\overset{} {\mathrm{D}}} {\int}\int\frac{\:{x}^{\mathrm{2}} \:+\:\mathrm{2}{y}^{\:\mathrm{2}} }{{x}^{\mathrm{2}} \:+\:\mathrm{4}{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }\:{dxdydz}=?}\end{cases} \\ $$$$ \\ $$$$ \\ $$

Question Number 210786    Answers: 1   Comments: 0

Question Number 210782    Answers: 0   Comments: 2

How to make 4 out of four 0′s ? HELP PLEASE

$$ \\ $$$$\:\:\:\mathscr{H}{ow}\:{to}\:{make}\:\mathrm{4}\:{out}\:{of}\:{four}\:\:\mathrm{0}'{s}\:? \\ $$$$\:\:\:\mathscr{HELP}\:\mathscr{PLEASE} \\ $$$$ \\ $$

Question Number 210769    Answers: 0   Comments: 1

Question Number 210767    Answers: 2   Comments: 2

Question Number 210765    Answers: 1   Comments: 0

Question Number 210761    Answers: 2   Comments: 7

Question Number 210755    Answers: 0   Comments: 0

  Pg 119      Pg 120      Pg 121      Pg 122      Pg 123      Pg 124      Pg 125      Pg 126      Pg 127      Pg 128   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com