Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1238
Question Number 90692 Answers: 1 Comments: 2
Question Number 90679 Answers: 0 Comments: 1
$${if}\:{y}={sin}\left({m}\mathrm{sin}^{−\mathrm{1}} {x}\right),\:{prove}\:{that}\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right){y}_{{n}+\mathrm{2}} −\left(\mathrm{2}{n}+\mathrm{1}\right){xy}_{{n}+\mathrm{1}} +\left({m}^{\mathrm{2}} −{n}^{\mathrm{2}} \right){y}_{{n}} =\mathrm{0} \\ $$
Question Number 92777 Answers: 1 Comments: 2
$$\mathrm{a}_{\mathrm{n}+\mathrm{1}} =\left(\mathrm{2n}+\mathrm{1}\right)\mathrm{a}_{\mathrm{n}} \\ $$$$\mathrm{a}_{\mathrm{1}} =\mathrm{1} \\ $$$$\mathrm{a}_{\mathrm{n}} =? \\ $$$$ \\ $$
Question Number 90661 Answers: 2 Comments: 0
$${show}\:{that}\:\left({n}^{\mathrm{4}} −{n}^{\mathrm{2}} \right)\:{is}\:{divisible}\:{by}\:\mathrm{12} \\ $$
Question Number 90647 Answers: 0 Comments: 14
Question Number 90641 Answers: 0 Comments: 4
$${Solve}\:{x}^{\mathrm{2}} {y}''+{xy}'+{x}^{\mathrm{2}} {y}=\mathrm{0} \\ $$
Question Number 90637 Answers: 1 Comments: 0
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{{n}} }{tan}\left(\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\right) \\ $$
Question Number 90632 Answers: 1 Comments: 0
Question Number 90630 Answers: 1 Comments: 1
$${f}\left({x}\right)\:=\:{xe}^{−{x}} \\ $$$${f}^{\left(\mathrm{2020}\right)} \left({x}\right)\:=\: \\ $$
Question Number 90629 Answers: 1 Comments: 1
$$\mathrm{If}\:\:\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{1}−{x}\right)−\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} {x}\:=\:\frac{\pi}{\mathrm{2}},\:\mathrm{then}\:{x}= \\ $$
Question Number 90628 Answers: 0 Comments: 1
$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{sin}\:\frac{\pi}{\mathrm{14}}\:\mathrm{sin}\:\frac{\mathrm{3}\pi}{\mathrm{14}}\:\mathrm{sin}\:\frac{\mathrm{5}\pi}{\mathrm{14}}\:\:\mathrm{is} \\ $$
Question Number 90625 Answers: 0 Comments: 0
$$\int{e}^{{arcsinx}} {dx} \\ $$
Question Number 90609 Answers: 0 Comments: 3
$${find}\:{the}\:{infinite}\:{sum}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{F}_{{n}} }{\mathrm{2}^{{n}} }\: \\ $$$${where}\:{F}_{{n}} =\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}+\mathrm{1}} −\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}+\mathrm{1}} \\ $$
Question Number 90596 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\:\mathrm{sin}\left(\mathrm{28}\right)\:\:=\:\:\mathrm{a}\:\:\:\:\mathrm{and}\:\:\:\mathrm{cos}\left(\mathrm{32}\right)\:\:=\:\:\mathrm{b} \\ $$$$\mathrm{Find}\:\:\left(\mathrm{i}\right)\:\:\mathrm{cos}\left(\mathrm{28}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{ii}\right)\:\mathrm{cos}\left(\mathrm{64}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{iii}\right)\:\mathrm{sin}\left(\mathrm{4}\right) \\ $$
Question Number 90594 Answers: 0 Comments: 3
Question Number 90592 Answers: 0 Comments: 3
$$\int_{\mathrm{0}} ^{\sqrt{{arccos}\left(\frac{−\mathrm{2}\phi}{\pi}+\mathrm{1}\right)}} {x}\:{sin}\left({x}^{\mathrm{2}} \right)\:{dx} \\ $$
Question Number 90590 Answers: 1 Comments: 2
Question Number 90589 Answers: 0 Comments: 3
$$\int\frac{\mathrm{1}}{{x}+\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{dx} \\ $$
Question Number 90588 Answers: 1 Comments: 0
$$\int\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{6}\:\:}}{dx} \\ $$
Question Number 90575 Answers: 0 Comments: 0
$$\:\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}}: \\ $$$$\:\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{y}}_{\mathrm{3}} +\left(\mathrm{1}−\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} \right)\boldsymbol{\mathrm{y}}_{\mathrm{2}} −\mathrm{8}\boldsymbol{\mathrm{x}}\:_{\:} \boldsymbol{\mathrm{y}}_{\mathrm{1}} −\mathrm{4}\boldsymbol{\mathrm{y}}=\:\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} \\ $$
Question Number 90574 Answers: 0 Comments: 2
$$\:\boldsymbol{\mathrm{Use}}\:\boldsymbol{\mathrm{gamma}}\:\boldsymbol{\mathrm{function}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{prove}} \\ $$$$\:\:\left(\mathrm{i}\right)\:.\:\:\int_{\mathrm{0}} ^{\:\:\frac{\boldsymbol{\pi}}{\mathrm{8}}} \:\boldsymbol{\mathrm{cos}}^{\mathrm{3}} \mathrm{4}\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{dx}}=\:\frac{\mathrm{1}}{\mathrm{6}}. \\ $$$$\:\:\left(\boldsymbol{\mathrm{ii}}\right).\:\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{6}}} \:\boldsymbol{\mathrm{cos}}^{\mathrm{4}} \mathrm{3}\boldsymbol{\theta}\:\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \mathrm{6}\boldsymbol{\theta}\:\boldsymbol{\mathrm{d}\theta}\:=\:\frac{\mathrm{5}\boldsymbol{\pi}}{\mathrm{192}}. \\ $$
Question Number 90570 Answers: 1 Comments: 1
$${find}\:{the}\:{sum}\:{of}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{3}^{{n}} } \\ $$
Question Number 90566 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{infinity}} \mathrm{Sin}^{\mathrm{4}} \mathrm{3x}/\mathrm{x}^{\mathrm{2}} \mathrm{dx} \\ $$
Question Number 90564 Answers: 0 Comments: 1
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{\left(^{\mathrm{3}} \sqrt{\mathrm{1}+{cos}\left(\mathrm{2}{x}\right)}−\left(^{\mathrm{3}} \sqrt{\mathrm{2}}\right)\right.}{{x}^{\mathrm{2}} {sin}\left(\mathrm{3}{x}\right)} \\ $$
Question Number 90562 Answers: 0 Comments: 2
$${prove}\:{that} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{n}\left(\mathrm{2}{n}−\mathrm{1}\right)}={ln}\mathrm{2} \\ $$
Question Number 90561 Answers: 0 Comments: 2
$${prove}\:{that} \\ $$$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Pg 1233 Pg 1234 Pg 1235 Pg 1236 Pg 1237 Pg 1238 Pg 1239 Pg 1240 Pg 1241 Pg 1242
Terms of Service
Privacy Policy
Contact: info@tinkutara.com