Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1238

Question Number 90788    Answers: 0   Comments: 1

lim_(x→−∞) (((x+2)/(x+1)))^(x/2)

$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\left(\frac{{x}+\mathrm{2}}{{x}+\mathrm{1}}\right)^{\frac{{x}}{\mathrm{2}}} \\ $$

Question Number 90787    Answers: 1   Comments: 3

Find the infinite sum Σ_(n=1) ^∞ (1/((2n−1)(2n+1)(2n+3)))

$${Find}\:{the}\:{infinite}\:{sum} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)} \\ $$

Question Number 90784    Answers: 0   Comments: 2

∫_0 ^2 (√((4−x)/x))−(√(x/(4−x))) dx ?

$$\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:\sqrt{\frac{\mathrm{4}−{x}}{{x}}}−\sqrt{\frac{{x}}{\mathrm{4}−{x}}}\:{dx}\:? \\ $$

Question Number 90783    Answers: 0   Comments: 1

can inflection point be a max or min ?

$${can}\:{inflection}\:{point}\: \\ $$$${be}\:{a}\:{max}\:{or}\:{min}\:?\: \\ $$

Question Number 90777    Answers: 0   Comments: 0

Question Number 90773    Answers: 1   Comments: 1

Question Number 90772    Answers: 0   Comments: 2

show that the roots of the equation x^2 −2x=(b−c)^2 −1 are rational if b and c are rational numbers.

$${show}\:{that}\:{the}\:{roots}\:{of}\:{the}\:{equation} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}=\left({b}−{c}\right)^{\mathrm{2}} −\mathrm{1}\:{are}\:{rational}\:{if} \\ $$$${b}\:{and}\:{c}\:{are}\:{rational}\:{numbers}. \\ $$

Question Number 90770    Answers: 1   Comments: 0

(ax+by+c)dx+(px+qy+r)dy=0

$$\left({ax}+{by}+{c}\right){dx}+\left({px}+{qy}+{r}\right){dy}=\mathrm{0} \\ $$

Question Number 90762    Answers: 1   Comments: 0

2^x +2^(3x) =16 solve for x

$$\mathrm{2}^{\mathrm{x}} +\mathrm{2}^{\mathrm{3x}} =\mathrm{16} \\ $$$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x} \\ $$

Question Number 90759    Answers: 0   Comments: 1

1/∫_0 ^∞ ∫_x ^∞ ((cos(t) ln^2 (x))/(t(√x)))dt dx 2/∫_(1/2) ^(3/2) ln(Γ(x))dx=((ln(π)−1)/2) 3/∫_0 ^(π/2) cos(nt) cos^m (t) dt=((πΓ(m+1))/(2^(m+1) Γ(((n+m+2)/2))Γ(((2−n+m)/2)))) 4/∫_0 ^(+∞) ((x exp(πcos(πx) sin(πsin(πx)))/(x^2 +π^2 ))dx=(π/2)exp(πexp(−π^2 ))−1)

$$\mathrm{1}/\int_{\mathrm{0}} ^{\infty} \int_{{x}} ^{\infty} \frac{{cos}\left({t}\right)\:{ln}^{\mathrm{2}} \left({x}\right)}{{t}\sqrt{{x}}}{dt}\:{dx} \\ $$$$ \\ $$$$\mathrm{2}/\int_{\mathrm{1}/\mathrm{2}} ^{\mathrm{3}/\mathrm{2}} {ln}\left(\Gamma\left({x}\right)\right){dx}=\frac{{ln}\left(\pi\right)−\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{3}/\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}\left({nt}\right)\:{cos}^{{m}} \left({t}\right)\:{dt}=\frac{\pi\Gamma\left({m}+\mathrm{1}\right)}{\mathrm{2}^{{m}+\mathrm{1}} \Gamma\left(\frac{{n}+{m}+\mathrm{2}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{2}−{n}+{m}}{\mathrm{2}}\right)} \\ $$$$ \\ $$$$\left.\mathrm{4}/\int_{\mathrm{0}} ^{+\infty} \frac{{x}\:{exp}\left(\pi{cos}\left(\pi{x}\right)\:{sin}\left(\pi{sin}\left(\pi{x}\right)\right)\right.}{{x}^{\mathrm{2}} +\pi^{\mathrm{2}} }{dx}=\frac{\pi}{\mathrm{2}}{exp}\left(\pi{exp}\left(−\pi^{\mathrm{2}} \right)\right)−\mathrm{1}\right) \\ $$

Question Number 90765    Answers: 0   Comments: 2

if ∫ (ln(x))^2 dx = x( ln^2 (x)+a ln(x)+b) +C a,b , C are constant. find the value of a and b

$${if}\:\int\:\left(\mathrm{ln}\left({x}\right)\right)^{\mathrm{2}} {dx}\:=\: \\ $$$${x}\left(\:\mathrm{ln}^{\mathrm{2}} \left({x}\right)+{a}\:\mathrm{ln}\left({x}\right)+{b}\right)\:+{C} \\ $$$${a},{b}\:,\:{C}\:{are}\:{constant}.\: \\ $$$${find}\:{the}\:{value}\:{of}\:{a}\:{and}\:{b}\: \\ $$

Question Number 90752    Answers: 1   Comments: 0

find ∫(1+x^2 )(√(1−x^2 ))dx

$${find}\:\int\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 90751    Answers: 0   Comments: 1

calculste lim_(n→∞) (1/n^2 )Σ_(k=1) ^n karctan((k/n))

$$\:{calculste}\:{lim}_{{n}\rightarrow\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\sum_{{k}=\mathrm{1}} ^{{n}} \:{karctan}\left(\frac{{k}}{{n}}\right) \\ $$

Question Number 90750    Answers: 0   Comments: 0

let α and β roots of x^2 −x+2=0 calculate A_n =Σ_(k=0) ^n (α^k +β^k ) B_n = Σ_(k=0) ^n (α^k −β^k )

$${let}\:\:\alpha\:{and}\:\beta\:{roots}\:{of}\:\:{x}^{\mathrm{2}} −{x}+\mathrm{2}=\mathrm{0}\:\:{calculate} \\ $$$${A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\left(\alpha^{{k}} \:+\beta^{{k}} \right) \\ $$$${B}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \left(\alpha^{{k}} −\beta^{{k}} \right) \\ $$

Question Number 90749    Answers: 0   Comments: 1

find Σ_(k=0) ^n C_n ^k cos(((kπ)/n))

$${find}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{cos}\left(\frac{{k}\pi}{{n}}\right) \\ $$

Question Number 90747    Answers: 1   Comments: 0

solve: t^(1/3) + t^(1/2) = 12

$$\mathrm{solve}:\:\:\:\mathrm{t}^{\mathrm{1}/\mathrm{3}} \:\:\:+\:\:\:\mathrm{t}^{\mathrm{1}/\mathrm{2}} \:\:\:=\:\:\:\mathrm{12} \\ $$

Question Number 90743    Answers: 1   Comments: 0

find nature of the serie Σ (−1)^n U_n with U_(n+1) =(e^(−U_n ) /(n+1)) (U_0 =1)

$${find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:\left(−\mathrm{1}\right)^{{n}} \:{U}_{{n}} \\ $$$${with}\:\:{U}_{{n}+\mathrm{1}} =\frac{{e}^{−{U}_{{n}} } }{{n}+\mathrm{1}}\:\:\:\:\:\left({U}_{\mathrm{0}} =\mathrm{1}\right) \\ $$

Question Number 90739    Answers: 1   Comments: 2

solve for x and y tan^2 [π(x+y)]+cot^2 [π(x+y)] =1+(√((2x)/(x^2 +1)))

$${solve}\:{for}\:{x}\:{and}\:{y} \\ $$$$\mathrm{tan}\:^{\mathrm{2}} \left[\pi\left({x}+{y}\right)\right]+\mathrm{cot}\:^{\mathrm{2}} \left[\pi\left({x}+{y}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1}+\sqrt{\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\mathrm{1}}} \\ $$

Question Number 90730    Answers: 0   Comments: 0

let a ,b integer and C=a^2 +b^2 Prove that there exist a_n and b_n all integers such as C^n =a_n ^2 +b_n ^2 explicit a_5 and b_5 interm of a and b

$${let}\:{a}\:,{b}\:{integer}\:{and}\:\:{C}={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \: \\ $$$${Prove}\:{that}\:{there}\:{exist}\:{a}_{{n}} \:{and}\:{b}_{{n}} \:{all}\: \\ $$$${integers}\:{such}\:{as}\:{C}^{{n}} ={a}_{{n}} ^{\mathrm{2}} \:+{b}_{{n}} ^{\mathrm{2}} \: \\ $$$${explicit}\:{a}_{\mathrm{5}} \:{and}\:{b}_{\mathrm{5}} \:{interm}\:{of}\:{a}\:{and}\:\:{b} \\ $$

Question Number 90727    Answers: 0   Comments: 0

Σ_(a,b≥1) (1/((a+b^2 )(a+b^2 +1))) nature and sum value

$$\underset{{a},{b}\geqslant\mathrm{1}} {\sum}\:\frac{\mathrm{1}}{\left({a}+{b}^{\mathrm{2}} \right)\left({a}+{b}^{\mathrm{2}} +\mathrm{1}\right)}\:\:\:\:\:\:{nature}\:{and}\:\:{sum}\:{value}\:\: \\ $$$$ \\ $$

Question Number 90722    Answers: 1   Comments: 3

lim_(x→0) ((((√(1+x)) −(√(1+x^2 )))^2 )/(cos x−1)) = ?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\sqrt{\mathrm{1}+{x}}\:−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{2}} }{\mathrm{cos}\:{x}−\mathrm{1}}\:=\:? \\ $$

Question Number 90717    Answers: 0   Comments: 0

Prove that for all integer r≥2 HCF(r^n −1;r^m −1)=r^(HCF(n;m)) −1

$${Prove}\:{that}\:{for}\:{all}\:{integer}\:{r}\geqslant\mathrm{2}\: \\ $$$$\:{HCF}\left({r}^{{n}} −\mathrm{1};{r}^{{m}} −\mathrm{1}\right)={r}^{{HCF}\left({n};{m}\right)} −\mathrm{1} \\ $$

Question Number 90716    Answers: 0   Comments: 1

If x + (1/x) = 4 , what the value of ((x^6 −1)/x^3 )

$${If}\:{x}\:+\:\frac{\mathrm{1}}{{x}}\:=\:\mathrm{4}\:,\:{what}\:{the}\: \\ $$$${value}\:{of}\:\frac{{x}^{\mathrm{6}} −\mathrm{1}}{{x}^{\mathrm{3}} } \\ $$

Question Number 90709    Answers: 0   Comments: 2

α,β and γ are the roots of x^3 −9x+9=0 find the value of (1) α^(−3) +β^(−3) +γ^(−3) (2) α^(−5) +β^(−5) +γ^(−5)

$$\alpha,\beta\:{and}\:\gamma\:{are}\:{the}\:{roots}\:{of}\:\:{x}^{\mathrm{3}} −\mathrm{9}{x}+\mathrm{9}=\mathrm{0} \\ $$$${find}\:{the}\:{value}\:{of}\:\left(\mathrm{1}\right)\:\alpha^{−\mathrm{3}} +\beta^{−\mathrm{3}} +\gamma^{−\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right)\:\alpha^{−\mathrm{5}} +\beta^{−\mathrm{5}} +\gamma^{−\mathrm{5}} \\ $$

Question Number 90706    Answers: 2   Comments: 1

Question Number 90700    Answers: 0   Comments: 3

sin^2 (((7π)/8))+sin^2 (((3π)/8))+sin^2 (((5π)/8))+sin^2 ((π/8)) ?

$$\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\mathrm{7}\pi}{\mathrm{8}}\right)+\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\mathrm{3}\pi}{\mathrm{8}}\right)+\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\mathrm{5}\pi}{\mathrm{8}}\right)+\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\pi}{\mathrm{8}}\right)\:? \\ $$

  Pg 1233      Pg 1234      Pg 1235      Pg 1236      Pg 1237      Pg 1238      Pg 1239      Pg 1240      Pg 1241      Pg 1242   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com