Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1238
Question Number 90509 Answers: 2 Comments: 3
Question Number 90508 Answers: 0 Comments: 0
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}^{{m}} \left(\mathrm{1}+{n}\right)^{{m}} }\right) \\ $$$${what}\:{is}\:{the}\:{general}\:{for}\:{this}\:{sum} \\ $$
Question Number 90507 Answers: 0 Comments: 2
$$ \\ $$$$\:\mathrm{if}\:\:\mathrm{2}^{\mathrm{sin}\:\mathrm{x}} +\mathrm{2}^{\mathrm{cos}\:\mathrm{x}} =\mathrm{2}^{\mathrm{1}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}} \:\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}=? \\ $$
Question Number 90503 Answers: 0 Comments: 2
Question Number 90489 Answers: 0 Comments: 0
$${Find}\:{f}\left({x}\right)\:{if}\:{it}\:{equals}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}^{{x}} }{{n}!} \\ $$
Question Number 90485 Answers: 0 Comments: 1
$${if}\:{x}_{\mathrm{0}} ={x}_{\mathrm{1}} =\mathrm{1}\:{and}\:{x}_{{n}+\mathrm{1}} =\mathrm{1996}{x}_{{n}} +\mathrm{1997}{x}_{{n}−\mathrm{1}} \\ $$$${for}\:{n}\geqslant\mathrm{2}.\:{Find}\:{the}\:{remainder}\:{of} \\ $$$${the}\:{division}\:{of}\:{x}_{\mathrm{1996}} \:{by}\:\mathrm{3} \\ $$
Question Number 90483 Answers: 0 Comments: 0
$${prove}\:{that}/\:\frac{{sin}^{\mathrm{3}} {a}}{{sin}\:{b}}+\frac{{cos}^{\mathrm{3}} {a}}{{cos}\:{b}}\geqslant{sec}\left({a}−{b}\right) \\ $$$${for}\:{all}\:{a},{b}\in\:\left(\mathrm{0},\frac{\pi}{\mathrm{2}}\right) \\ $$
Question Number 90480 Answers: 0 Comments: 0
$$\int{e}^{{x}} \frac{\left(\mathrm{1}+{cos}\left({x}\right)\right)\left(\mathrm{1}−{sin}\left({x}\right)\right)}{\left({e}^{{x}} \:{cos}\left({x}\right)+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 90475 Answers: 0 Comments: 3
Question Number 90473 Answers: 1 Comments: 2
Question Number 90472 Answers: 0 Comments: 3
$$\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{m}} {\sum}}\frac{\mathrm{2k}+\mathrm{3}}{\mathrm{2}^{\mathrm{m}−\mathrm{k}} } \\ $$
Question Number 90471 Answers: 0 Comments: 0
$${is}\:{there}\:{a}\:{simple}\:{way} \\ $$$${to}\:{write} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{2}}{{n}\left({n}+\mathrm{1}\right)}\right)^{{m}} \:{for}\:{any}\:{m}\geqslant\mathrm{0} \\ $$
Question Number 90470 Answers: 0 Comments: 0
$${For}\:{any}\:{positive}\:{integer}\:{n},\:\tau\left({n}\right)\:{is}\:{the}\:{number}\:{of}\:{its}\:{factors}\: \\ $$$${Prove}, \\ $$$$\sum_{{i}=\mathrm{1}} ^{{n}} \tau\left({i}\right)=\sum_{{i}=\mathrm{1}} ^{{n}} \lfloor{n}/{i}\rfloor \\ $$
Question Number 90468 Answers: 0 Comments: 1
Question Number 90499 Answers: 1 Comments: 6
Question Number 90463 Answers: 0 Comments: 1
Question Number 90458 Answers: 0 Comments: 1
$$\int\:\sqrt{\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{13}}{\mathrm{x}}}\:\mathrm{dx}\:? \\ $$
Question Number 90457 Answers: 0 Comments: 5
$${the}\:{range}\:{of}\:{y}=\sqrt{{x}}\:\:{is}\left[\mathrm{0},+\infty\right)\:{if}\:{x}\geqslant\mathrm{0} \\ $$$${or}\:{just}\:\left[\mathrm{0},+\infty\right)\:? \\ $$
Question Number 90456 Answers: 2 Comments: 0
$${ABCD}\:{is}\:{a}\:{square}\:{with}\:{side}\:{length}=\mathrm{1} \\ $$$${E}\:{is}\:{a}\:{moving}\:{point}\:{between}\:{B\&C} \\ $$$${F}\:{is}\:{a}\:{moving}\:{point}\:{between}\:{C\&D} \\ $$$${Find}\:{the}\:{maximum}\:{radius}\:{of}\:{inscribed} \\ $$$${circle}\:{in}\:\bigtriangleup{AEF} \\ $$
Question Number 90446 Answers: 0 Comments: 2
$$\mathrm{find}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{solid} \\ $$$$\mathrm{formed}\:\mathrm{by}\:\mathrm{rotating}\:\mathrm{the}\:\mathrm{area} \\ $$$$\mathrm{trapped}\:\mathrm{by}\:\mathrm{y}\:=\:\mathrm{sin}\:\mathrm{x}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{x}−\mathrm{axis}\:\mathrm{around}\:\mathrm{the}\:\mathrm{line}\:\mathrm{y}=\mathrm{3} \\ $$$$\mathrm{for}\:\mathrm{0}<\mathrm{x}<\pi\: \\ $$
Question Number 90443 Answers: 0 Comments: 3
$$\mathrm{find}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{solid}\:\mathrm{formed} \\ $$$$\mathrm{by}\:\mathrm{rotating}\:\mathrm{the}\:\mathrm{area}\:\mathrm{trapped} \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{line}\:\mathrm{y}\:=\:\mathrm{1}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{4}−\mathrm{3x}^{\mathrm{2}} \\ $$$$\mathrm{aroud}\:\mathrm{the}\:\mathrm{line}\:\mathrm{y}\:=\:\mathrm{1} \\ $$
Question Number 90437 Answers: 0 Comments: 2
Question Number 90435 Answers: 0 Comments: 1
Question Number 90434 Answers: 0 Comments: 3
$$\frac{\mathrm{log}_{\mathrm{2}} \left(\mathrm{8}{x}\right).\mathrm{log}_{\mathrm{3}} \left(\mathrm{27}{x}\right)}{{x}^{\mathrm{2}} −\mid{x}\mid}\:\leqslant\:\mathrm{0}\: \\ $$
Question Number 90424 Answers: 0 Comments: 1
$$\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:\underset{\frac{\mathrm{1}}{\mathrm{2}}{y}} {\overset{\mathrm{1}} {\int}}\:{e}^{−{x}^{\mathrm{2}} } \:{dxdy}\:=\:?\: \\ $$
Question Number 90417 Answers: 0 Comments: 6
$$\int\:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{12}} } \\ $$
Pg 1233 Pg 1234 Pg 1235 Pg 1236 Pg 1237 Pg 1238 Pg 1239 Pg 1240 Pg 1241 Pg 1242
Terms of Service
Privacy Policy
Contact: info@tinkutara.com