Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1237

Question Number 91611    Answers: 0   Comments: 1

find the volume of the region between curves (xy=4 and x+y=5) revolvex around the X axis

$$\:{find}\:{the}\:{volume}\:{of}\:{the}\:{region}\: \\ $$$${between}\:{curves}\:\left({xy}=\mathrm{4}\:{and}\:{x}+{y}=\mathrm{5}\right) \\ $$$${revolvex}\:{around}\:{the}\:{X}\:{axis} \\ $$

Question Number 91608    Answers: 0   Comments: 2

Question Number 91604    Answers: 0   Comments: 0

Question Number 91603    Answers: 0   Comments: 1

calculate ∫_0 ^∞ xe^(−x^2 −[x]) dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} {xe}^{−{x}^{\mathrm{2}} −\left[{x}\right]} \:{dx} \\ $$

Question Number 91599    Answers: 0   Comments: 1

Question Number 91595    Answers: 1   Comments: 2

what′s meaning of (x^. ) or (x^(..) )? are (x^. )=x′?

$$\mathrm{what}'\mathrm{s}\:\mathrm{meaning}\:\mathrm{of}\:\left(\overset{.} {\mathrm{x}}\right)\:\mathrm{or}\:\left(\overset{..} {\mathrm{x}}\right)? \\ $$$$\mathrm{are}\:\left(\overset{.} {\mathrm{x}}\right)=\mathrm{x}'? \\ $$

Question Number 91593    Answers: 1   Comments: 0

∫ ((sec x csc x dx)/(ln(tan^2 x))) ?

$$\int\:\frac{\mathrm{sec}\:{x}\:{csc}\:{x}\:{dx}}{\mathrm{ln}\left(\mathrm{tan}\:^{\mathrm{2}} {x}\right)}\:? \\ $$

Question Number 91588    Answers: 0   Comments: 2

what is f^(−1) for f(x)=⌊x⌋??

$${what}\:{is}\:{f}^{−\mathrm{1}} \:{for}\:{f}\left({x}\right)=\lfloor{x}\rfloor?? \\ $$

Question Number 91578    Answers: 0   Comments: 2

f((1/x))+2f(x)= ((4x^3 +6x)/(3x^2 )) f(x)=?

$$ \\ $$$${f}\left(\frac{\mathrm{1}}{{x}}\right)+\mathrm{2}{f}\left({x}\right)=\:\frac{\mathrm{4}{x}^{\mathrm{3}} +\mathrm{6}{x}}{\mathrm{3}{x}^{\mathrm{2}} } \\ $$$${f}\left({x}\right)=? \\ $$

Question Number 91568    Answers: 2   Comments: 0

Question Number 91560    Answers: 0   Comments: 2

x=((1+(√(2004)))/2) 4x^3 −2007x−2000=?

$${x}=\frac{\mathrm{1}+\sqrt{\mathrm{2004}}}{\mathrm{2}} \\ $$$$\mathrm{4}{x}^{\mathrm{3}} −\mathrm{2007}{x}−\mathrm{2000}=? \\ $$

Question Number 91558    Answers: 2   Comments: 1

(x^2 +1)y′+y^2 +1 = 0

$$\left({x}^{\mathrm{2}} +\mathrm{1}\right){y}'+{y}^{\mathrm{2}} +\mathrm{1}\:=\:\mathrm{0}\: \\ $$

Question Number 91555    Answers: 1   Comments: 4

Question Number 91542    Answers: 2   Comments: 3

∫ (x^3 /(2x+1)) dx = ?

$$\int\:\frac{{x}^{\mathrm{3}} }{\mathrm{2}{x}+\mathrm{1}}\:{dx}\:=\:? \\ $$

Question Number 91534    Answers: 0   Comments: 3

∫_1 ^∞ ((sin^2 (x))/x^2 )dx

$$\int_{\mathrm{1}} ^{\infty} \frac{{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 91521    Answers: 0   Comments: 8

given that the composite function f^2 (x) = 64x+45 find f(x)

$${given}\:{that}\:{the}\: \\ $$$${composite} \\ $$$${function}\:{f}^{\mathrm{2}} \left({x}\right)\:=\:\mathrm{64}{x}+\mathrm{45}\: \\ $$$${find}\:{f}\left({x}\right)\: \\ $$

Question Number 91509    Answers: 0   Comments: 2

does anyone know Glauss′ law for magnetism? tanks

$${does}\:{anyone}\:{know}\:{Glauss}'\:{law}\:{for}\:{magnetism}?\:{tanks} \\ $$

Question Number 91508    Answers: 0   Comments: 1

Find the greatest number that divides 59 and 54 leaving remainders 3 and 5 respectively.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{number}\:\mathrm{that}\:\mathrm{divides} \\ $$$$\mathrm{59}\:\mathrm{and}\:\mathrm{54}\:\mathrm{leaving}\:\mathrm{remainders}\:\mathrm{3}\:\mathrm{and} \\ $$$$\mathrm{5}\:\mathrm{respectively}. \\ $$

Question Number 91507    Answers: 0   Comments: 1

(((−a^6 ×b^3 ×c^(21) )/(c^9 ×a^(12) )))^(1/3) =

$$\sqrt[{\mathrm{3}}]{\frac{−{a}^{\mathrm{6}} ×{b}^{\mathrm{3}} ×{c}^{\mathrm{21}} }{{c}^{\mathrm{9}} ×{a}^{\mathrm{12}} }}\:=\: \\ $$

Question Number 91500    Answers: 0   Comments: 1

v=π∫_1 ^4 [((1/4).x^2 )^2 dx

$${v}=\pi\int_{\mathrm{1}} ^{\mathrm{4}} \left[\left(\frac{\mathrm{1}}{\mathrm{4}}.{x}^{\mathrm{2}} \right)^{\mathrm{2}} {dx}\right. \\ $$

Question Number 91497    Answers: 0   Comments: 1

v=π∫_0 ^2 x^2 dx

$${v}=\pi\int_{\mathrm{0}} ^{\mathrm{2}} {x}^{\mathrm{2}} {dx} \\ $$

Question Number 91496    Answers: 0   Comments: 1

The vector a=3i−2j+2k and b=−i−2k are the adjacent sides of a parallelogram. Then angle between its diagonal is

$$\mathrm{The}\:\mathrm{vector}\:\boldsymbol{\mathrm{a}}=\mathrm{3}\boldsymbol{\mathrm{i}}−\mathrm{2}\boldsymbol{\mathrm{j}}+\mathrm{2}\boldsymbol{\mathrm{k}}\:\:\mathrm{and}\:\boldsymbol{\mathrm{b}}=−\boldsymbol{\mathrm{i}}−\mathrm{2}\boldsymbol{\mathrm{k}} \\ $$$$\mathrm{are}\:\mathrm{the}\:\mathrm{adjacent}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{parallelogram}. \\ $$$$\mathrm{Then}\:\mathrm{angle}\:\mathrm{between}\:\mathrm{its}\:\mathrm{diagonal}\:\mathrm{is} \\ $$

Question Number 91494    Answers: 1   Comments: 0

The value of the integral ∫_( 1) ^3 (√(3+x^3 )) dx lies in the interval....

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integral}\:\underset{\:\mathrm{1}} {\overset{\mathrm{3}} {\int}}\:\sqrt{\mathrm{3}+{x}^{\mathrm{3}} }\:{dx} \\ $$$$\mathrm{lies}\:\mathrm{in}\:\mathrm{the}\:\mathrm{interval}.... \\ $$

Question Number 91493    Answers: 1   Comments: 1

∫_( 0) ^(π/2) log (((4+3 sin x)/(4+3 cos x)))dx =

$$\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\mathrm{log}\:\left(\frac{\mathrm{4}+\mathrm{3}\:\mathrm{sin}\:{x}}{\mathrm{4}+\mathrm{3}\:\mathrm{cos}\:{x}}\right){dx}\:= \\ $$

Question Number 91484    Answers: 0   Comments: 2

Question Number 91491    Answers: 1   Comments: 0

x^3 +1 = 2 ((2x−1))^(1/(3 )) x =?

$${x}^{\mathrm{3}} +\mathrm{1}\:=\:\mathrm{2}\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{2}{x}−\mathrm{1}} \\ $$$${x}\:=? \\ $$

  Pg 1232      Pg 1233      Pg 1234      Pg 1235      Pg 1236      Pg 1237      Pg 1238      Pg 1239      Pg 1240      Pg 1241   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com