Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1235
Question Number 89188 Answers: 2 Comments: 0
$${f}\left({x}\right)\:+\:{f}\left({x}−\mathrm{1}\right)\:\:=\:\:{x}^{\mathrm{2}} \:\:\:,\:\:\:{x}\:\in\:\mathbb{R} \\ $$$${f}\left(\mathrm{19}\right)\:\:=\:\:\mathrm{94} \\ $$$${f}\left(\mathrm{94}\right)\:\:=\:\:...\:\:? \\ $$
Question Number 89187 Answers: 0 Comments: 2
Question Number 89185 Answers: 0 Comments: 1
Question Number 89172 Answers: 1 Comments: 0
Question Number 89153 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{P}=\frac{\mathrm{RE}^{\mathrm{2}} }{\left(\mathrm{R}+\mathrm{B}\right)^{\mathrm{2}} }\:\mathrm{make}\:\mathrm{R}\:\mathrm{the}\:\mathrm{subject}\:\mathrm{of}\:\mathrm{the}\:\mathrm{formula}. \\ $$
Question Number 89146 Answers: 6 Comments: 4
$$\left.\mathrm{1}\right)\int{x}\sqrt{\frac{{x}−\mathrm{2}}{{x}+\mathrm{1}}}\:{dx} \\ $$$$\left.\mathrm{2}\right)\int\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{dx} \\ $$$$\left.\mathrm{3}\right)\int\sqrt{−{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{10}}\:{dx} \\ $$
Question Number 89144 Answers: 0 Comments: 0
Question Number 89143 Answers: 0 Comments: 0
Question Number 89131 Answers: 0 Comments: 0
$$\mathrm{2}{v}\sqrt{\left.\right]\left.\right\}\left\{\%={bvg}\right.} \\ $$
Question Number 89130 Answers: 0 Comments: 0
$$ \\ $$
Question Number 89129 Answers: 0 Comments: 0
Question Number 89126 Answers: 0 Comments: 0
$$\mathrm{6}\left[\sqrt{\:\:}\right. \\ $$
Question Number 89125 Answers: 1 Comments: 0
Question Number 89124 Answers: 2 Comments: 5
Question Number 89123 Answers: 0 Comments: 4
$$\int\:\frac{\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{sec}\:{x}−\mathrm{cos}\:^{\mathrm{2}} {x}}\:{dx}\:? \\ $$
Question Number 89161 Answers: 1 Comments: 2
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({sin}\left({x}\right)\right){dx} \\ $$
Question Number 89178 Answers: 0 Comments: 1
$${If}\:{z}\left({z}^{\mathrm{2}} +\mathrm{3}{x}\right)+\mathrm{3}{y}=\mathrm{0}\:{prove}\:{that}\: \\ $$$$\frac{\partial^{\mathrm{2}} {z}}{\partial{x}^{\mathrm{2}} }\:+\:\frac{\partial^{\mathrm{2}} {z}}{\partial{y}^{\mathrm{2}} }=\:\frac{\mathrm{2}{z}\left({x}−\mathrm{1}\right)}{\left({z}^{\mathrm{2}} +{x}\right)^{\mathrm{3}} } \\ $$$$ \\ $$$$ \\ $$$${please}\:{help}. \\ $$$$ \\ $$
Question Number 89107 Answers: 0 Comments: 0
Question Number 89099 Answers: 1 Comments: 1
Question Number 89093 Answers: 0 Comments: 0
Question Number 89092 Answers: 0 Comments: 2
$${Evaluate}\::\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{e}^{−{n}} \:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{n}^{{k}} }{{k}!} \\ $$
Question Number 89097 Answers: 1 Comments: 1
Question Number 89098 Answers: 0 Comments: 0
$${x}=^{\:\:{c}−\mathrm{1}} \sqrt{\frac{{ay}−{bz}}{{cdy}}} \\ $$$$ \\ $$$$\mathrm{If}\:{a}\:\mathrm{increases},\:\mathrm{what}\:\mathrm{happens}\:\mathrm{to}\:{x}? \\ $$$$\mathrm{Explain}\:\mathrm{your}\:\mathrm{answer}. \\ $$
Question Number 89079 Answers: 2 Comments: 0
$$\left(\mathrm{cos}\:\mathrm{4}{x}+\mathrm{1}\right)\left(\mathrm{cos}\:\mathrm{2}{x}+\mathrm{1}\right)\left(\mathrm{cos}\:{x}+\mathrm{1}\right)=\:\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\mathrm{0}\:\leqslant\:{x}\:\leqslant\:\mathrm{2}\pi \\ $$
Question Number 89077 Answers: 0 Comments: 0
Question Number 89074 Answers: 0 Comments: 1
$$×^{\mathrm{4}} +×^{\mathrm{2}} =\mathrm{1} \\ $$
Pg 1230 Pg 1231 Pg 1232 Pg 1233 Pg 1234 Pg 1235 Pg 1236 Pg 1237 Pg 1238 Pg 1239
Terms of Service
Privacy Policy
Contact: info@tinkutara.com