Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1235

Question Number 91277    Answers: 2   Comments: 0

p=1−(1/2)+(1/3)−(1/4)+...+(1/(2003))−(1/(2004)) q=(1/(1003))+(1/(1004))+...+(1/(2004)) p^2 +q^2 =

$${p}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}+...+\frac{\mathrm{1}}{\mathrm{2003}}−\frac{\mathrm{1}}{\mathrm{2004}} \\ $$$${q}=\frac{\mathrm{1}}{\mathrm{1003}}+\frac{\mathrm{1}}{\mathrm{1004}}+...+\frac{\mathrm{1}}{\mathrm{2004}} \\ $$$${p}^{\mathrm{2}} +{q}^{\mathrm{2}} \:=\: \\ $$

Question Number 91275    Answers: 0   Comments: 6

Question Number 91274    Answers: 0   Comments: 0

lim_(n→∞) n^(−n^2 ) [(n+1)(n+(1/2))....(n+(1/2^(n−1) ))]^n

$$\underset{{n}\rightarrow\infty} {{lim}n}^{−{n}^{\mathrm{2}} } \left[\left({n}+\mathrm{1}\right)\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)....\left({n}+\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} }\right)\right]^{{n}} \\ $$

Question Number 91272    Answers: 1   Comments: 0

(D^2 +4)y = sin 2x

$$\left({D}^{\mathrm{2}} +\mathrm{4}\right){y}\:=\:\mathrm{sin}\:\mathrm{2}{x} \\ $$

Question Number 91271    Answers: 1   Comments: 1

calculate ∫_0 ^1 ((ln(1+x))/((x+1)^2 ))dx

$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 91270    Answers: 0   Comments: 0

find ∫_0 ^∞ ((arctan(x+(1/x)))/(x^2 +1))dx

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$

Question Number 91269    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((x^2 −1)/((x^2 +x+2)^3 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{2}\right)^{\mathrm{3}} }{dx} \\ $$

Question Number 91268    Answers: 0   Comments: 5

let A = (((1 2)),((1 −1)) ) 1) calculste A^n 2) determine e^A and e^(−2A) 3)find cos(A)and sinA is cos^2 A +sin^2 A =I? 4) determine sh(A) and ch(A) is ch^2 A−sh^2 A =I ?

$${let}\:{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{1}\:\:\:\:\:−\mathrm{1}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{calculste}\:{A}^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{determine}\:\:{e}^{{A}} \:\:{and}\:{e}^{−\mathrm{2}{A}} \\ $$$$\left.\mathrm{3}\right){find}\:{cos}\left({A}\right){and}\:{sinA}\:\:\:{is}\:{cos}^{\mathrm{2}} {A}\:+{sin}^{\mathrm{2}} {A}\:={I}? \\ $$$$\left.\mathrm{4}\right)\:{determine}\:{sh}\left({A}\right)\:{and}\:{ch}\left({A}\right)\:\:{is}\:{ch}^{\mathrm{2}} {A}−{sh}^{\mathrm{2}} {A}\:={I}\:\:? \\ $$

Question Number 91263    Answers: 0   Comments: 0

y′′′′ +2y′′+y = sin x

$${y}''''\:+\mathrm{2}{y}''+{y}\:=\:\mathrm{sin}\:{x} \\ $$

Question Number 91258    Answers: 0   Comments: 0

prove that _2 F_1 (α,β,β−a+1,−1)=((Γ(β−a+1)Γ((β/2)+1))/(Γ(β+1)Γ((β/2)−α+1)))

$${prove}\:{that} \\ $$$$\:\:\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\alpha,\beta,\beta−{a}+\mathrm{1},−\mathrm{1}\right)=\frac{\Gamma\left(\beta−{a}+\mathrm{1}\right)\Gamma\left(\frac{\beta}{\mathrm{2}}+\mathrm{1}\right)}{\Gamma\left(\beta+\mathrm{1}\right)\Gamma\left(\frac{\beta}{\mathrm{2}}−\alpha+\mathrm{1}\right)} \\ $$

Question Number 92440    Answers: 0   Comments: 1

Question Number 91230    Answers: 2   Comments: 0

Σ_(j=o) ^m ^a C_j ^b C_(m−j) = ^(a+b) C_m solve this problem

$$\underset{{j}={o}} {\overset{{m}} {\sum}}\:\:\overset{{a}} {\:}{C}_{{j}} \:\overset{{b}} {\:}{C}_{{m}−{j}} \:\:=\:\overset{{a}+{b}} {\:}{C}_{{m}} \\ $$$${solve}\:{this}\:{problem} \\ $$

Question Number 91228    Answers: 0   Comments: 1

lim_(x→1) lnx(∫_0 ^x (dt/(lnt)) )

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\:{lnx}\left(\int_{\mathrm{0}} ^{{x}} \:\frac{{dt}}{{lnt}}\:\right)\: \\ $$

Question Number 91223    Answers: 1   Comments: 0

what is complementary error function erfc(t)?

$${what}\:{is}\:{complementary}\:{error}\:{function} \\ $$$${erfc}\left({t}\right)? \\ $$

Question Number 91220    Answers: 0   Comments: 3

∫_1 ^x ((lnt)/(1+t^2 ))dt

$$\int_{\mathrm{1}} ^{\mathrm{x}} \frac{\mathrm{lnt}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\mathrm{dt} \\ $$

Question Number 91217    Answers: 0   Comments: 3

Question Number 91211    Answers: 1   Comments: 1

x dy +5y dx = 2y^4 x dx

$${x}\:{dy}\:+\mathrm{5}{y}\:{dx}\:=\:\mathrm{2}{y}^{\mathrm{4}} {x}\:{dx} \\ $$

Question Number 91196    Answers: 1   Comments: 1

Question Number 91195    Answers: 1   Comments: 0

what is the duble fictorial furmolla?

$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{duble}\:\mathrm{fictorial}\:\mathrm{furmolla}? \\ $$

Question Number 91185    Answers: 1   Comments: 2

f(x)=(x−3)^5 ln(1+x) f^((2020)) (3)=?

$${f}\left({x}\right)=\left({x}−\mathrm{3}\right)^{\mathrm{5}} {ln}\left(\mathrm{1}+{x}\right) \\ $$$${f}^{\left(\mathrm{2020}\right)} \left(\mathrm{3}\right)=? \\ $$

Question Number 91183    Answers: 0   Comments: 0

Question Number 91182    Answers: 1   Comments: 0

lim_(x→0) ((2x^6 +3x^2 −3tan^2 x)/(3x^6 ))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}{x}^{\mathrm{6}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{3tan}\:^{\mathrm{2}} {x}}{\mathrm{3}{x}^{\mathrm{6}} } \\ $$

Question Number 91178    Answers: 0   Comments: 2

Question Number 91176    Answers: 0   Comments: 1

My Post Filter Issue Dear Mr W, can you send a few screenshots on what is seen when using filter myposts. Thank You

$$\mathrm{My}\:\mathrm{Post}\:\mathrm{Filter}\:\mathrm{Issue} \\ $$$$\mathrm{Dear}\:\mathrm{Mr}\:\mathrm{W},\:\mathrm{can}\:\mathrm{you}\:\mathrm{send}\:\mathrm{a}\:\mathrm{few}\:\mathrm{screenshots} \\ $$$$\mathrm{on}\:\mathrm{what}\:\mathrm{is}\:\mathrm{seen}\:\mathrm{when}\:\mathrm{using}\:\mathrm{filter} \\ $$$$\mathrm{myposts}.\:\mathrm{Thank}\:\mathrm{You} \\ $$

Question Number 91177    Answers: 1   Comments: 1

6^((log_2 x)^2 ) + x^((log_2 x)) = 12

$$\mathrm{6}^{\left(\mathrm{log}_{\mathrm{2}} \:{x}\right)^{\mathrm{2}} } \:+\:{x}^{\left(\mathrm{log}_{\mathrm{2}} \:{x}\right)} \:=\:\mathrm{12}\: \\ $$

Question Number 91167    Answers: 1   Comments: 4

  Pg 1230      Pg 1231      Pg 1232      Pg 1233      Pg 1234      Pg 1235      Pg 1236      Pg 1237      Pg 1238      Pg 1239   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com