Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1232
Question Number 90727 Answers: 0 Comments: 0
$$\underset{{a},{b}\geqslant\mathrm{1}} {\sum}\:\frac{\mathrm{1}}{\left({a}+{b}^{\mathrm{2}} \right)\left({a}+{b}^{\mathrm{2}} +\mathrm{1}\right)}\:\:\:\:\:\:{nature}\:{and}\:\:{sum}\:{value}\:\: \\ $$$$ \\ $$
Question Number 90722 Answers: 1 Comments: 3
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\sqrt{\mathrm{1}+{x}}\:−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{2}} }{\mathrm{cos}\:{x}−\mathrm{1}}\:=\:? \\ $$
Question Number 90717 Answers: 0 Comments: 0
$${Prove}\:{that}\:{for}\:{all}\:{integer}\:{r}\geqslant\mathrm{2}\: \\ $$$$\:{HCF}\left({r}^{{n}} −\mathrm{1};{r}^{{m}} −\mathrm{1}\right)={r}^{{HCF}\left({n};{m}\right)} −\mathrm{1} \\ $$
Question Number 90716 Answers: 0 Comments: 1
$${If}\:{x}\:+\:\frac{\mathrm{1}}{{x}}\:=\:\mathrm{4}\:,\:{what}\:{the}\: \\ $$$${value}\:{of}\:\frac{{x}^{\mathrm{6}} −\mathrm{1}}{{x}^{\mathrm{3}} } \\ $$
Question Number 90709 Answers: 0 Comments: 2
$$\alpha,\beta\:{and}\:\gamma\:{are}\:{the}\:{roots}\:{of}\:\:{x}^{\mathrm{3}} −\mathrm{9}{x}+\mathrm{9}=\mathrm{0} \\ $$$${find}\:{the}\:{value}\:{of}\:\left(\mathrm{1}\right)\:\alpha^{−\mathrm{3}} +\beta^{−\mathrm{3}} +\gamma^{−\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right)\:\alpha^{−\mathrm{5}} +\beta^{−\mathrm{5}} +\gamma^{−\mathrm{5}} \\ $$
Question Number 90706 Answers: 2 Comments: 1
Question Number 90700 Answers: 0 Comments: 3
$$\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\mathrm{7}\pi}{\mathrm{8}}\right)+\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\mathrm{3}\pi}{\mathrm{8}}\right)+\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\mathrm{5}\pi}{\mathrm{8}}\right)+\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\pi}{\mathrm{8}}\right)\:? \\ $$
Question Number 90698 Answers: 1 Comments: 3
$${how}\:{many}\:{solution}\:{the}\:{equation} \\ $$$$\lfloor\:{x}\:\rfloor\:+\mathrm{2016}.\:\left\{{x}\right\}\:=\:\mathrm{38}? \\ $$
Question Number 90692 Answers: 1 Comments: 2
Question Number 90679 Answers: 0 Comments: 1
$${if}\:{y}={sin}\left({m}\mathrm{sin}^{−\mathrm{1}} {x}\right),\:{prove}\:{that}\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right){y}_{{n}+\mathrm{2}} −\left(\mathrm{2}{n}+\mathrm{1}\right){xy}_{{n}+\mathrm{1}} +\left({m}^{\mathrm{2}} −{n}^{\mathrm{2}} \right){y}_{{n}} =\mathrm{0} \\ $$
Question Number 92777 Answers: 1 Comments: 2
$$\mathrm{a}_{\mathrm{n}+\mathrm{1}} =\left(\mathrm{2n}+\mathrm{1}\right)\mathrm{a}_{\mathrm{n}} \\ $$$$\mathrm{a}_{\mathrm{1}} =\mathrm{1} \\ $$$$\mathrm{a}_{\mathrm{n}} =? \\ $$$$ \\ $$
Question Number 90661 Answers: 2 Comments: 0
$${show}\:{that}\:\left({n}^{\mathrm{4}} −{n}^{\mathrm{2}} \right)\:{is}\:{divisible}\:{by}\:\mathrm{12} \\ $$
Question Number 90647 Answers: 0 Comments: 14
Question Number 90641 Answers: 0 Comments: 4
$${Solve}\:{x}^{\mathrm{2}} {y}''+{xy}'+{x}^{\mathrm{2}} {y}=\mathrm{0} \\ $$
Question Number 90637 Answers: 1 Comments: 0
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{{n}} }{tan}\left(\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\right) \\ $$
Question Number 90632 Answers: 1 Comments: 0
Question Number 90630 Answers: 1 Comments: 1
$${f}\left({x}\right)\:=\:{xe}^{−{x}} \\ $$$${f}^{\left(\mathrm{2020}\right)} \left({x}\right)\:=\: \\ $$
Question Number 90629 Answers: 1 Comments: 1
$$\mathrm{If}\:\:\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{1}−{x}\right)−\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} {x}\:=\:\frac{\pi}{\mathrm{2}},\:\mathrm{then}\:{x}= \\ $$
Question Number 90628 Answers: 0 Comments: 1
$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{sin}\:\frac{\pi}{\mathrm{14}}\:\mathrm{sin}\:\frac{\mathrm{3}\pi}{\mathrm{14}}\:\mathrm{sin}\:\frac{\mathrm{5}\pi}{\mathrm{14}}\:\:\mathrm{is} \\ $$
Question Number 90625 Answers: 0 Comments: 0
$$\int{e}^{{arcsinx}} {dx} \\ $$
Question Number 90609 Answers: 0 Comments: 3
$${find}\:{the}\:{infinite}\:{sum}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{F}_{{n}} }{\mathrm{2}^{{n}} }\: \\ $$$${where}\:{F}_{{n}} =\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}+\mathrm{1}} −\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}+\mathrm{1}} \\ $$
Question Number 90596 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\:\mathrm{sin}\left(\mathrm{28}\right)\:\:=\:\:\mathrm{a}\:\:\:\:\mathrm{and}\:\:\:\mathrm{cos}\left(\mathrm{32}\right)\:\:=\:\:\mathrm{b} \\ $$$$\mathrm{Find}\:\:\left(\mathrm{i}\right)\:\:\mathrm{cos}\left(\mathrm{28}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{ii}\right)\:\mathrm{cos}\left(\mathrm{64}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{iii}\right)\:\mathrm{sin}\left(\mathrm{4}\right) \\ $$
Question Number 90594 Answers: 0 Comments: 3
Question Number 90592 Answers: 0 Comments: 3
$$\int_{\mathrm{0}} ^{\sqrt{{arccos}\left(\frac{−\mathrm{2}\phi}{\pi}+\mathrm{1}\right)}} {x}\:{sin}\left({x}^{\mathrm{2}} \right)\:{dx} \\ $$
Question Number 90590 Answers: 1 Comments: 2
Question Number 90589 Answers: 0 Comments: 3
$$\int\frac{\mathrm{1}}{{x}+\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{dx} \\ $$
Pg 1227 Pg 1228 Pg 1229 Pg 1230 Pg 1231 Pg 1232 Pg 1233 Pg 1234 Pg 1235 Pg 1236
Terms of Service
Privacy Policy
Contact: info@tinkutara.com