Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1231
Question Number 90810 Answers: 1 Comments: 2
$$\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{2}{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{xy}}\: \\ $$
Question Number 90806 Answers: 0 Comments: 1
$$\mathrm{log}_{\left({x}+\mathrm{4}\right)} \left({x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{12}\right)\:<\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{log}_{\mid{x}−\mathrm{2}\mid} \left(\mathrm{2}−{x}\right)^{\mathrm{2}} \\ $$
Question Number 90803 Answers: 0 Comments: 0
$${U}={ax}−{bx}^{{c}} +{dy}\:\mathrm{is}\:\mathrm{subject}\:\mathrm{to}\:\mathrm{I}={mx}+{ny}. \\ $$$$ \\ $$$$\mathrm{What}\:\mathrm{happens}\:\mathrm{to}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{point}\:\mathrm{of}\:\boldsymbol{{x}}, \\ $$$${when}\:\boldsymbol{{a}}\:\mathrm{increases}?\:\mathrm{Explain}\:\mathrm{your}\:\mathrm{answer}. \\ $$$$ \\ $$$$\left(\mathrm{Use}\:\mathrm{Lagrange}\:\mathrm{method}\right) \\ $$
Question Number 90802 Answers: 0 Comments: 2
$$\left.\mathrm{1}\right)\:\underset{\mathrm{ln}\:\mathrm{2}} {\overset{\infty} {\int}}\:\frac{\mathrm{1}}{\sqrt{\mathrm{e}^{{x}} −\mathrm{1}}}\:{dx}\: \\ $$$$\left.\mathrm{2}\right)\:\underset{\mathrm{ln}\:\mathrm{2}} {\overset{\infty} {\int}}\:\frac{\mathrm{1}}{{e}^{{x}} −\mathrm{1}}\:{dx}\: \\ $$
Question Number 90801 Answers: 0 Comments: 3
$${what}\:{are}\:{the}\:{next}\:{two}\:{number}\: \\ $$$${of}\:{this}\:{series}\:\mathrm{4},\mathrm{7},\mathrm{9},\mathrm{2},\mathrm{5},\mathrm{6},\mathrm{3},\mathrm{8}\:? \\ $$
Question Number 90796 Answers: 2 Comments: 3
$$\int_{\mathrm{0}} ^{\sqrt{\mathrm{3}}} \frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right){dx} \\ $$
Question Number 90793 Answers: 1 Comments: 4
$${a}+{b}+{c}+{d}=\mathrm{4} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} =\mathrm{10} \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} +{d}^{\mathrm{3}} =\mathrm{22} \\ $$$${a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} +{d}^{\mathrm{4}} =\:? \\ $$
Question Number 90788 Answers: 0 Comments: 1
$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\left(\frac{{x}+\mathrm{2}}{{x}+\mathrm{1}}\right)^{\frac{{x}}{\mathrm{2}}} \\ $$
Question Number 90787 Answers: 1 Comments: 3
$${Find}\:{the}\:{infinite}\:{sum} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)} \\ $$
Question Number 90784 Answers: 0 Comments: 2
$$\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:\sqrt{\frac{\mathrm{4}−{x}}{{x}}}−\sqrt{\frac{{x}}{\mathrm{4}−{x}}}\:{dx}\:? \\ $$
Question Number 90783 Answers: 0 Comments: 1
$${can}\:{inflection}\:{point}\: \\ $$$${be}\:{a}\:{max}\:{or}\:{min}\:?\: \\ $$
Question Number 90777 Answers: 0 Comments: 0
Question Number 90773 Answers: 1 Comments: 1
Question Number 90772 Answers: 0 Comments: 2
$${show}\:{that}\:{the}\:{roots}\:{of}\:{the}\:{equation} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}=\left({b}−{c}\right)^{\mathrm{2}} −\mathrm{1}\:{are}\:{rational}\:{if} \\ $$$${b}\:{and}\:{c}\:{are}\:{rational}\:{numbers}. \\ $$
Question Number 90770 Answers: 1 Comments: 0
$$\left({ax}+{by}+{c}\right){dx}+\left({px}+{qy}+{r}\right){dy}=\mathrm{0} \\ $$
Question Number 90762 Answers: 1 Comments: 0
$$\mathrm{2}^{\mathrm{x}} +\mathrm{2}^{\mathrm{3x}} =\mathrm{16} \\ $$$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x} \\ $$
Question Number 90759 Answers: 0 Comments: 1
$$\mathrm{1}/\int_{\mathrm{0}} ^{\infty} \int_{{x}} ^{\infty} \frac{{cos}\left({t}\right)\:{ln}^{\mathrm{2}} \left({x}\right)}{{t}\sqrt{{x}}}{dt}\:{dx} \\ $$$$ \\ $$$$\mathrm{2}/\int_{\mathrm{1}/\mathrm{2}} ^{\mathrm{3}/\mathrm{2}} {ln}\left(\Gamma\left({x}\right)\right){dx}=\frac{{ln}\left(\pi\right)−\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{3}/\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}\left({nt}\right)\:{cos}^{{m}} \left({t}\right)\:{dt}=\frac{\pi\Gamma\left({m}+\mathrm{1}\right)}{\mathrm{2}^{{m}+\mathrm{1}} \Gamma\left(\frac{{n}+{m}+\mathrm{2}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{2}−{n}+{m}}{\mathrm{2}}\right)} \\ $$$$ \\ $$$$\left.\mathrm{4}/\int_{\mathrm{0}} ^{+\infty} \frac{{x}\:{exp}\left(\pi{cos}\left(\pi{x}\right)\:{sin}\left(\pi{sin}\left(\pi{x}\right)\right)\right.}{{x}^{\mathrm{2}} +\pi^{\mathrm{2}} }{dx}=\frac{\pi}{\mathrm{2}}{exp}\left(\pi{exp}\left(−\pi^{\mathrm{2}} \right)\right)−\mathrm{1}\right) \\ $$
Question Number 90765 Answers: 0 Comments: 2
$${if}\:\int\:\left(\mathrm{ln}\left({x}\right)\right)^{\mathrm{2}} {dx}\:=\: \\ $$$${x}\left(\:\mathrm{ln}^{\mathrm{2}} \left({x}\right)+{a}\:\mathrm{ln}\left({x}\right)+{b}\right)\:+{C} \\ $$$${a},{b}\:,\:{C}\:{are}\:{constant}.\: \\ $$$${find}\:{the}\:{value}\:{of}\:{a}\:{and}\:{b}\: \\ $$
Question Number 90752 Answers: 1 Comments: 0
$${find}\:\int\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 90751 Answers: 0 Comments: 1
$$\:{calculste}\:{lim}_{{n}\rightarrow\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\sum_{{k}=\mathrm{1}} ^{{n}} \:{karctan}\left(\frac{{k}}{{n}}\right) \\ $$
Question Number 90750 Answers: 0 Comments: 0
$${let}\:\:\alpha\:{and}\:\beta\:{roots}\:{of}\:\:{x}^{\mathrm{2}} −{x}+\mathrm{2}=\mathrm{0}\:\:{calculate} \\ $$$${A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\left(\alpha^{{k}} \:+\beta^{{k}} \right) \\ $$$${B}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \left(\alpha^{{k}} −\beta^{{k}} \right) \\ $$
Question Number 90749 Answers: 0 Comments: 1
$${find}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{cos}\left(\frac{{k}\pi}{{n}}\right) \\ $$
Question Number 90747 Answers: 1 Comments: 0
$$\mathrm{solve}:\:\:\:\mathrm{t}^{\mathrm{1}/\mathrm{3}} \:\:\:+\:\:\:\mathrm{t}^{\mathrm{1}/\mathrm{2}} \:\:\:=\:\:\:\mathrm{12} \\ $$
Question Number 90743 Answers: 1 Comments: 0
$${find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:\left(−\mathrm{1}\right)^{{n}} \:{U}_{{n}} \\ $$$${with}\:\:{U}_{{n}+\mathrm{1}} =\frac{{e}^{−{U}_{{n}} } }{{n}+\mathrm{1}}\:\:\:\:\:\left({U}_{\mathrm{0}} =\mathrm{1}\right) \\ $$
Question Number 90739 Answers: 1 Comments: 2
$${solve}\:{for}\:{x}\:{and}\:{y} \\ $$$$\mathrm{tan}\:^{\mathrm{2}} \left[\pi\left({x}+{y}\right)\right]+\mathrm{cot}\:^{\mathrm{2}} \left[\pi\left({x}+{y}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1}+\sqrt{\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\mathrm{1}}} \\ $$
Question Number 90730 Answers: 0 Comments: 0
$${let}\:{a}\:,{b}\:{integer}\:{and}\:\:{C}={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \: \\ $$$${Prove}\:{that}\:{there}\:{exist}\:{a}_{{n}} \:{and}\:{b}_{{n}} \:{all}\: \\ $$$${integers}\:{such}\:{as}\:{C}^{{n}} ={a}_{{n}} ^{\mathrm{2}} \:+{b}_{{n}} ^{\mathrm{2}} \: \\ $$$${explicit}\:{a}_{\mathrm{5}} \:{and}\:{b}_{\mathrm{5}} \:{interm}\:{of}\:{a}\:{and}\:\:{b} \\ $$
Pg 1226 Pg 1227 Pg 1228 Pg 1229 Pg 1230 Pg 1231 Pg 1232 Pg 1233 Pg 1234 Pg 1235
Terms of Service
Privacy Policy
Contact: info@tinkutara.com