Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1230

Question Number 89878    Answers: 1   Comments: 1

A four_digit whole number is interesting if the number formed by the leftmost two digits is twice as large as the number formed by the rightmost two digits. (for example 2010 is interesting) 1 find the largest whole number B such that all interesting numbers are divisible by B 2 find the smallest whole number D such that D is divisible by all interesting numbers.

$$\boldsymbol{{A}}\:\boldsymbol{{four\_digit}}\:\boldsymbol{{whole}}\:\boldsymbol{{number}} \\ $$$$\boldsymbol{{is}}\:\boldsymbol{{interesting}}\:\boldsymbol{{if}}\:\boldsymbol{{the}}\:\boldsymbol{{number}} \\ $$$$\boldsymbol{{formed}}\:\boldsymbol{{by}}\:\boldsymbol{{the}}\:\boldsymbol{{leftmost}}\:\boldsymbol{{two}} \\ $$$$\boldsymbol{{digits}}\:\boldsymbol{{is}}\:\boldsymbol{{twice}}\:\boldsymbol{{as}}\:\boldsymbol{{large}}\:\boldsymbol{{as}}\:\boldsymbol{{the}} \\ $$$$\boldsymbol{{number}}\:\boldsymbol{{formed}}\:\boldsymbol{{by}}\:\boldsymbol{{the}} \\ $$$$\boldsymbol{{rightmost}}\:\boldsymbol{{two}}\:\boldsymbol{{digits}}. \\ $$$$\left(\boldsymbol{{for}}\:\boldsymbol{{example}}\:\mathrm{2010}\:\boldsymbol{{is}}\:\boldsymbol{{interesting}}\right) \\ $$$$\mathrm{1}\:\:\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{largest}}\:\boldsymbol{{whole}}\:\boldsymbol{{number}} \\ $$$$\mathbb{B}\:\boldsymbol{{such}}\:\boldsymbol{{that}}\:\boldsymbol{{all}}\:\boldsymbol{{interesting}} \\ $$$$\boldsymbol{{numbers}}\:\boldsymbol{{are}}\:\boldsymbol{{divisible}}\:\boldsymbol{{by}}\:\mathbb{B} \\ $$$$\mathrm{2}\:\:\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{smallest}}\:\boldsymbol{{whole}} \\ $$$$\boldsymbol{{number}}\:\mathbb{D}\:\boldsymbol{{such}}\:\boldsymbol{{that}}\:\mathbb{D}\:\boldsymbol{{is}} \\ $$$$\boldsymbol{{divisible}}\:\boldsymbol{{by}}\:\boldsymbol{{all}}\:\boldsymbol{{interesting}} \\ $$$$\boldsymbol{{numbers}}. \\ $$

Question Number 89874    Answers: 0   Comments: 0

∫_(1/3) ^(2/3) ((ln(1+(√(x^2 −(1/3)))))/(x(√(x^2 −(1/3)))))dx

$$\int_{\frac{\mathrm{1}}{\mathrm{3}}} ^{\frac{\mathrm{2}}{\mathrm{3}}} \:\frac{{ln}\left(\mathrm{1}+\sqrt{{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{3}}}\right)}{{x}\sqrt{{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{3}}}}{dx} \\ $$

Question Number 89852    Answers: 1   Comments: 0

Question Number 89849    Answers: 3   Comments: 1

Question Number 89848    Answers: 0   Comments: 1

Q1. If sinθ=(3/5) then find the value of tanθ+cotθ

$${Q}\mathrm{1}.\:{If}\:{sin}\theta=\frac{\mathrm{3}}{\mathrm{5}}\:{then}\:{find}\:{the}\:{value}\:{of}\:{tan}\theta+{cot}\theta \\ $$

Question Number 89846    Answers: 1   Comments: 3

∫_(−1) ^1 x cosh(x) ln(1+e^x ) dx

$$\int_{−\mathrm{1}} ^{\mathrm{1}} \:{x}\:{cosh}\left({x}\right)\:{ln}\left(\mathrm{1}+{e}^{{x}} \right)\:{dx} \\ $$

Question Number 89835    Answers: 2   Comments: 0

x^2 (d^2 y/dx^2 ) + 4x (dy/dx) + 2y = e^x

$${x}^{\mathrm{2}} \:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\mathrm{4}{x}\:\frac{{dy}}{{dx}}\:+\:\mathrm{2}{y}\:=\:{e}^{{x}} \\ $$

Question Number 89834    Answers: 1   Comments: 1

Find x e^x = x^2 −1 anyother method apart from Newton′s

$${Find}\:{x}\: \\ $$$$\boldsymbol{{e}}^{\boldsymbol{{x}}} =\:\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{1} \\ $$$$\boldsymbol{{anyother}}\:\boldsymbol{{method}}\:\boldsymbol{{apart}}\:\boldsymbol{{from}}\:\boldsymbol{{N}}{ewton}'{s} \\ $$

Question Number 89829    Answers: 0   Comments: 9

Question Number 89826    Answers: 0   Comments: 0

Solve the equation: x^2 + xy + y^2 = 7 ...... (i) y^2 + yz + z^2 = 3 ...... (ii) z^2 + xz + x^2 = 1 ..... (iii)

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\:\:\:\:\:\:\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{xy}\:\:+\:\:\mathrm{y}^{\mathrm{2}} \:\:\:=\:\:\:\mathrm{7}\:\:\:\:\:\:\:\:\:......\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\mathrm{y}^{\mathrm{2}} \:\:+\:\:\mathrm{yz}\:\:+\:\:\mathrm{z}^{\mathrm{2}} \:\:\:=\:\:\:\mathrm{3}\:\:\:\:\:\:\:\:\:\:......\:\left(\mathrm{ii}\right) \\ $$$$\:\:\:\:\:\:\mathrm{z}^{\mathrm{2}} \:\:+\:\:\mathrm{xz}\:\:+\:\:\mathrm{x}^{\mathrm{2}} \:\:\:=\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:.....\:\left(\mathrm{iii}\right) \\ $$

Question Number 89809    Answers: 3   Comments: 0

(dy/dx) = (y^2 /(xy−x^2 ))

$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{xy}−\mathrm{x}^{\mathrm{2}} } \\ $$

Question Number 89805    Answers: 1   Comments: 3

find minimum and maximum value of f(x,y) = x^2 −y^2 with constraint x^2 +y^2 = 1 with Lagrange method

$$\mathrm{find}\:\mathrm{minimum}\:\mathrm{and}\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)\:=\:\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \\ $$$$\mathrm{with}\:\mathrm{constraint}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{1} \\ $$$$\mathrm{with}\:\mathrm{Lagrange}\:\mathrm{method} \\ $$

Question Number 89804    Answers: 1   Comments: 0

Question Number 89816    Answers: 0   Comments: 3

Question Number 89817    Answers: 0   Comments: 0

Question Number 89795    Answers: 1   Comments: 0

Question Number 89794    Answers: 0   Comments: 1

true or false (1+(1/1^3 ))(1+(1/2^3 ))(1+(1/3^3 )).....(1+(1/n^3 ))<3

$${true}\:{or}\:{false} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{3}} }\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }\right).....\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\right)<\mathrm{3} \\ $$

Question Number 89781    Answers: 0   Comments: 8

Question Number 89776    Answers: 0   Comments: 2

what is the stability of the following function (dy/dt) = y^3 −2y^2 + y

$${what}\:{is}\:{the}\:{stability}\:{of}\:{the}\: \\ $$$${following}\:{function}\: \\ $$$$\frac{{dy}}{{dt}}\:=\:{y}^{\mathrm{3}} \:−\mathrm{2}{y}^{\mathrm{2}} \:+\:{y}\: \\ $$

Question Number 89768    Answers: 2   Comments: 0

t(n) − t(n−1) = n for n > 0 and t(0) = 1 find t(n)

$${t}\left({n}\right)\:−\:{t}\left({n}−\mathrm{1}\right)\:=\:{n}\:\: \\ $$$${for}\:{n}\:>\:\mathrm{0}\:{and}\:{t}\left(\mathrm{0}\right)\:=\:\mathrm{1}\: \\ $$$${find}\:{t}\left({n}\right)\: \\ $$

Question Number 89755    Answers: 1   Comments: 1

Question Number 89753    Answers: 1   Comments: 6

(d/dx) (Π_(k = 1) ^(16) (x+(1/k)))∣_( x = 0) = ?

$$\frac{\mathrm{d}}{\mathrm{dx}}\:\left(\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{\mathrm{16}} {\prod}}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{k}}\right)\right)\underset{\:\mathrm{x}\:=\:\mathrm{0}} {\mid}\:=\:? \\ $$

Question Number 89749    Answers: 0   Comments: 4

Question Number 89748    Answers: 0   Comments: 4

dx = (1+2xtan y) dy

$$\mathrm{dx}\:=\:\left(\mathrm{1}+\mathrm{2xtan}\:\mathrm{y}\right)\:\mathrm{dy}\: \\ $$

Question Number 89745    Answers: 0   Comments: 2

f(x) = f(x+((3π)/8)) , ∀x∈ R if ∫_0 ^(3π/8) f(x) dx = t , then ∫_π ^(5π/2) f(x−π) dx = A. 2t B. 3t C. 4t D. 6t E. 8t

$$\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{f}\left(\mathrm{x}+\frac{\mathrm{3}\pi}{\mathrm{8}}\right)\:,\:\forall\mathrm{x}\in\:\mathbb{R} \\ $$$$\mathrm{if}\:\underset{\mathrm{0}} {\overset{\mathrm{3}\pi/\mathrm{8}} {\int}}\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx}\:=\:\mathrm{t}\:,\:\mathrm{then}\: \\ $$$$\underset{\pi} {\overset{\mathrm{5}\pi/\mathrm{2}} {\int}}\mathrm{f}\left(\mathrm{x}−\pi\right)\:\mathrm{dx}\:=\: \\ $$$$\mathrm{A}.\:\mathrm{2t}\:\:\:\:\:\:\:\mathrm{B}.\:\mathrm{3t}\:\:\:\:\:\:\:\mathrm{C}.\:\mathrm{4t}\:\:\:\:\:\:\:\mathrm{D}.\:\mathrm{6t} \\ $$$$\mathrm{E}.\:\mathrm{8t}\: \\ $$

Question Number 89920    Answers: 0   Comments: 1

x=(1/(1+(1/(1+x)))) and y=(2/(2+(1/(1+y )))) find x+y

$${x}=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+{x}}}\:{and}\:{y}=\frac{\mathrm{2}}{\mathrm{2}+\frac{\mathrm{1}}{\mathrm{1}+{y}\:}}\:{find}\:{x}+{y} \\ $$

  Pg 1225      Pg 1226      Pg 1227      Pg 1228      Pg 1229      Pg 1230      Pg 1231      Pg 1232      Pg 1233      Pg 1234   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com