Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1230

Question Number 81954    Answers: 0   Comments: 6

soit α∈]0;π[. determiner: 1)le module et l′argument de: a)1−e^(iα) ,b)1+e^(i𝛂) 2)deduire le module et l′argument de a) ((1−e^(iα) )/(1+e^(iα) )), b)(1−e^(iα) )(1+e^(iα) ) rochinel930@gmail.c

$$\left.\:{soit}\:\alpha\in\right]\mathrm{0};\pi\left[.\:{determiner}:\right. \\ $$$$\left.\mathrm{1}\right){le}\:{module}\:{et}\:{l}'{argument}\:{de}: \\ $$$$\left.\boldsymbol{{a}}\left.\right)\mathrm{1}−\boldsymbol{{e}}^{\boldsymbol{{i}}\alpha} ,\boldsymbol{{b}}\right)\mathrm{1}+\boldsymbol{{e}}^{\boldsymbol{{i}\alpha}} \\ $$$$\left.\mathrm{2}\right)\boldsymbol{{deduire}}\:\boldsymbol{{le}}\:\boldsymbol{{module}}\:\boldsymbol{{et}}\:\boldsymbol{{l}}'\boldsymbol{{argument}}\:\boldsymbol{{de}} \\ $$$$\left.\:\left.\boldsymbol{{a}}\right)\:\frac{\mathrm{1}−\boldsymbol{{e}}^{\boldsymbol{{i}}\alpha} }{\mathrm{1}+{e}^{{i}\alpha} },\:{b}\right)\left(\mathrm{1}−{e}^{{i}\alpha} \right)\left(\mathrm{1}+{e}^{{i}\alpha} \right) \\ $$$$\:\boldsymbol{{rochinel}}\mathrm{930}@{gmail}.\boldsymbol{{c}} \\ $$

Question Number 81944    Answers: 2   Comments: 0

show that cot(40°)−cot(50°)=2tan(10°) cos(70°) cos(50^° ) cos(10^° )=((√3)/8)

$${show}\:{that}\: \\ $$$${cot}\left(\mathrm{40}°\right)−{cot}\left(\mathrm{50}°\right)=\mathrm{2}{tan}\left(\mathrm{10}°\right) \\ $$$${cos}\left(\mathrm{70}°\right)\:{cos}\left(\mathrm{50}^{°} \right)\:{cos}\left(\mathrm{10}^{°} \right)=\frac{\sqrt{\mathrm{3}}}{\mathrm{8}} \\ $$

Question Number 81943    Answers: 0   Comments: 0

Evaluate: (((√(30 + (√8) + (√5)))/((√8) + (√5))))^(1/4)

$$\mathrm{Evaluate}:\:\:\:\:\left(\frac{\sqrt{\mathrm{30}\:+\:\sqrt{\mathrm{8}}\:+\:\sqrt{\mathrm{5}}}}{\sqrt{\mathrm{8}}\:+\:\sqrt{\mathrm{5}}}\right)^{\mathrm{1}/\mathrm{4}} \\ $$

Question Number 81942    Answers: 1   Comments: 0

Question Number 81937    Answers: 0   Comments: 2

Solve the PDE by method of separating variables (∂^2 u/∂x^2 ) + 2t(∂^2 u/(∂x∂t)) − 4u = 0

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{PDE}\:\mathrm{by}\:\mathrm{method}\:\mathrm{of}\:\mathrm{separating}\:\mathrm{variables} \\ $$$$\frac{\partial^{\mathrm{2}} {u}}{\partial{x}^{\mathrm{2}} }\:+\:\mathrm{2}{t}\frac{\partial^{\mathrm{2}} {u}}{\partial{x}\partial{t}}\:−\:\mathrm{4}{u}\:=\:\mathrm{0} \\ $$

Question Number 81927    Answers: 2   Comments: 0

One man adds 3 litres of water to 12 litres of milk and another 4 litres of water to 10 litres of milk. What is the ratio of the strengths of milk in the two mixtures?

$$\mathrm{One}\:\mathrm{man}\:\mathrm{adds}\:\mathrm{3}\:\mathrm{litres}\:\mathrm{of}\:\mathrm{water}\:\mathrm{to}\:\mathrm{12}\:\mathrm{litres}\:\mathrm{of}\:\mathrm{milk} \\ $$$$\mathrm{and}\:\mathrm{another}\:\mathrm{4}\:\mathrm{litres}\:\mathrm{of}\:\mathrm{water}\:\mathrm{to}\:\mathrm{10}\:\mathrm{litres}\:\mathrm{of}\:\mathrm{milk}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{the}\:\mathrm{strengths}\:\mathrm{of}\:\mathrm{milk}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{two}\:\mathrm{mixtures}? \\ $$

Question Number 81926    Answers: 1   Comments: 1

3 integers are chosen at random from the first 20 integers. The probability that their ptoduct is even, is

$$\mathrm{3}\:\mathrm{integers}\:\mathrm{are}\:\mathrm{chosen}\:\mathrm{at}\:\mathrm{random}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{first}\:\mathrm{20}\:\mathrm{integers}.\:\mathrm{The}\:\mathrm{probability} \\ $$$$\mathrm{that}\:\mathrm{their}\:\mathrm{ptoduct}\:\mathrm{is}\:\mathrm{even},\:\mathrm{is} \\ $$

Question Number 81925    Answers: 1   Comments: 0

If A and B are two indpendent events, the probability that both A and B occur is (1/8) and the probability that neither of them occurs is (3/8) . The probability of the occurrence of A is

$$\mathrm{If}\:{A}\:\mathrm{and}\:{B}\:\mathrm{are}\:\mathrm{two}\:\mathrm{indpendent}\:\mathrm{events}, \\ $$$$\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{both}\:{A}\:\mathrm{and}\:{B}\:\mathrm{occur} \\ $$$$\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{8}}\:\mathrm{and}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{neither}\:\mathrm{of} \\ $$$$\mathrm{them}\:\mathrm{occurs}\:\mathrm{is}\:\frac{\mathrm{3}}{\mathrm{8}}\:.\:\mathrm{The}\:\mathrm{probability}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{occurrence}\:\mathrm{of}\:{A}\:\mathrm{is} \\ $$

Question Number 81921    Answers: 1   Comments: 0

Question Number 81911    Answers: 1   Comments: 4

Question Number 81910    Answers: 0   Comments: 1

a_1 =1 a_2 =2 a_(n+1) =(n+1)a_n −2a_(n−1) find a_n =?

$${a}_{\mathrm{1}} =\mathrm{1} \\ $$$${a}_{\mathrm{2}} =\mathrm{2} \\ $$$${a}_{{n}+\mathrm{1}} =\left({n}+\mathrm{1}\right){a}_{{n}} −\mathrm{2}{a}_{{n}−\mathrm{1}} \\ $$$${find}\:{a}_{{n}} =? \\ $$

Question Number 81906    Answers: 0   Comments: 1

Question Number 81889    Answers: 1   Comments: 0

Question Number 81888    Answers: 1   Comments: 1

Question Number 81887    Answers: 0   Comments: 2

Question Number 81884    Answers: 0   Comments: 1

Question Number 81879    Answers: 0   Comments: 2

The value of determinant determinant (((−1),( 1),( 1)),(( 1),(−1),( 1)),(( 1),( 1),(−1))) is equal to

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{determinant}\begin{vmatrix}{−\mathrm{1}}&{\:\:\:\:\mathrm{1}}&{\:\:\:\:\mathrm{1}}\\{\:\:\:\:\mathrm{1}}&{−\mathrm{1}}&{\:\:\:\:\mathrm{1}}\\{\:\:\:\:\mathrm{1}}&{\:\:\:\:\:\mathrm{1}}&{−\mathrm{1}}\end{vmatrix} \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 81876    Answers: 0   Comments: 1

The system of linear equations x+y+z=2, 2x+y−z=3, 3x+2y+kz=4 has a unique solution if

$$\mathrm{The}\:\mathrm{system}\:\mathrm{of}\:\mathrm{linear}\:\mathrm{equations}\:{x}+{y}+{z}=\mathrm{2}, \\ $$$$\mathrm{2}{x}+{y}−{z}=\mathrm{3},\:\mathrm{3}{x}+\mathrm{2}{y}+{kz}=\mathrm{4}\:\mathrm{has}\:\mathrm{a}\:\mathrm{unique} \\ $$$$\mathrm{solution}\:\mathrm{if} \\ $$

Question Number 81892    Answers: 5   Comments: 0

Question Number 81874    Answers: 0   Comments: 2

If A= [(( 1),(−5),( 7)),(( 0),( 7),( 9)),((11),( 8),( 9)) ] then trace of matrix A is

$$\mathrm{If}\:{A}=\begin{bmatrix}{\:\:\mathrm{1}}&{−\mathrm{5}}&{\:\:\:\mathrm{7}}\\{\:\:\mathrm{0}}&{\:\:\:\:\mathrm{7}}&{\:\:\:\mathrm{9}}\\{\mathrm{11}}&{\:\:\:\:\mathrm{8}}&{\:\:\:\mathrm{9}}\end{bmatrix}\:\mathrm{then}\:\mathrm{trace}\:\mathrm{of}\: \\ $$$$\mathrm{matrix}\:{A}\:\mathrm{is} \\ $$

Question Number 81873    Answers: 1   Comments: 1

determinant (((sin^2 x),(cos^2 x),1),((cos^2 x),(sin^2 x),1),((−10),( 12),2))=

$$\begin{vmatrix}{\mathrm{sin}^{\mathrm{2}} {x}}&{\mathrm{cos}^{\mathrm{2}} {x}}&{\mathrm{1}}\\{\mathrm{cos}^{\mathrm{2}} {x}}&{\mathrm{sin}^{\mathrm{2}} {x}}&{\mathrm{1}}\\{−\mathrm{10}}&{\:\:\mathrm{12}}&{\mathrm{2}}\end{vmatrix}= \\ $$

Question Number 81872    Answers: 1   Comments: 0

If every element of a third order determinant of value △ is multiplied by 5, then the value of new determinant is

$$\mathrm{If}\:\mathrm{every}\:\mathrm{element}\:\mathrm{of}\:\mathrm{a}\:\mathrm{third}\:\mathrm{order} \\ $$$$\mathrm{determinant}\:\mathrm{of}\:\mathrm{value}\:\bigtriangleup\:\mathrm{is}\:\mathrm{multiplied}\:\mathrm{by} \\ $$$$\mathrm{5},\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{new}\:\mathrm{determinant}\:\mathrm{is} \\ $$

Question Number 81871    Answers: 1   Comments: 3

a_1 =4 a_(n+1) =((4a_n +3)/(a_n +2)) find a_n =?

$${a}_{\mathrm{1}} =\mathrm{4} \\ $$$${a}_{{n}+\mathrm{1}} =\frac{\mathrm{4}{a}_{{n}} +\mathrm{3}}{{a}_{{n}} +\mathrm{2}} \\ $$$${find}\:{a}_{{n}} =? \\ $$

Question Number 81854    Answers: 1   Comments: 1

Question Number 81853    Answers: 1   Comments: 2

lim_(x→∞) {n ∫_0 ^1 (x^n /(x^3 +1)) dx } = ?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left\{{n}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{x}^{{n}} }{{x}^{\mathrm{3}} +\mathrm{1}}\:{dx}\:\right\}\:=\:? \\ $$

Question Number 81843    Answers: 2   Comments: 5

  Pg 1225      Pg 1226      Pg 1227      Pg 1228      Pg 1229      Pg 1230      Pg 1231      Pg 1232      Pg 1233      Pg 1234   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com