Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1230

Question Number 91786    Answers: 0   Comments: 7

repost question from mr jagoll { ((2+6y = (x/y)−(√(x−2y)))),(((√(x+(√(x−2y)))) = x+3y−2 )) :}

$${repost}\:{question}\:{from} \\ $$$${mr}\:{jagoll} \\ $$$$\begin{cases}{\mathrm{2}+\mathrm{6}{y}\:=\:\frac{{x}}{{y}}−\sqrt{{x}−\mathrm{2}{y}}}\\{\sqrt{{x}+\sqrt{{x}−\mathrm{2}{y}}}\:=\:{x}+\mathrm{3}{y}−\mathrm{2}\:}\end{cases} \\ $$

Question Number 91785    Answers: 0   Comments: 5

given these bellow sequenses . find fifth term 1). (1/5), (1/4) , (3/(11)), (2/7),... 2). (3/5), ((−9)/(11)) , ((−25)/(19)), ((57)/(35)),... 3). (1/6), (7/(11)) , ((13)/(16)), ((19)/(21)),... 4). 4,− (2/3) , −(4/(13)),− (1/5),... 5). 2, 9 , 28 , 65,...

$$\mathrm{given}\:\:\mathrm{these}\:\mathrm{bellow}\:\mathrm{sequenses}\:.\: \\ $$$$\mathrm{find}\:\mathrm{fifth}\:\mathrm{term} \\ $$$$ \\ $$$$\left.\mathrm{1}\right).\:\:\frac{\mathrm{1}}{\mathrm{5}},\:\frac{\mathrm{1}}{\mathrm{4}}\:,\:\frac{\mathrm{3}}{\mathrm{11}},\:\frac{\mathrm{2}}{\mathrm{7}},... \\ $$$$\left.\mathrm{2}\right).\:\:\frac{\mathrm{3}}{\mathrm{5}},\:\frac{−\mathrm{9}}{\mathrm{11}}\:,\:\frac{−\mathrm{25}}{\mathrm{19}},\:\frac{\mathrm{57}}{\mathrm{35}},... \\ $$$$\left.\mathrm{3}\right).\:\:\:\frac{\mathrm{1}}{\mathrm{6}},\:\frac{\mathrm{7}}{\mathrm{11}}\:,\:\frac{\mathrm{13}}{\mathrm{16}},\:\frac{\mathrm{19}}{\mathrm{21}},... \\ $$$$\left.\mathrm{4}\right).\:\:\:\mathrm{4},−\:\frac{\mathrm{2}}{\mathrm{3}}\:,\:−\frac{\mathrm{4}}{\mathrm{13}},−\:\frac{\mathrm{1}}{\mathrm{5}},... \\ $$$$\left.\mathrm{5}\right).\:\:\mathrm{2},\:\mathrm{9}\:,\:\mathrm{28}\:,\:\mathrm{65},... \\ $$

Question Number 91783    Answers: 0   Comments: 1

1). (1/2), (2/3), (3/4) , (4/5), ..., .... 2). 4,6,10,18,34,...,.... 3). 5,7,11,19,35,...,.... 4). 4,6,10,18,34,...,.... 5). 4,11,30,85,248,...,...

$$\left.\mathrm{1}\right).\:\:\frac{\mathrm{1}}{\mathrm{2}},\:\frac{\mathrm{2}}{\mathrm{3}},\:\frac{\mathrm{3}}{\mathrm{4}}\:,\:\frac{\mathrm{4}}{\mathrm{5}},\:...,\:.... \\ $$$$\left.\mathrm{2}\right).\:\:\mathrm{4},\mathrm{6},\mathrm{10},\mathrm{18},\mathrm{34},...,.... \\ $$$$\left.\mathrm{3}\right).\:\:\mathrm{5},\mathrm{7},\mathrm{11},\mathrm{19},\mathrm{35},...,.... \\ $$$$\left.\mathrm{4}\right).\:\:\mathrm{4},\mathrm{6},\mathrm{10},\mathrm{18},\mathrm{34},...,.... \\ $$$$\left.\mathrm{5}\right).\:\:\mathrm{4},\mathrm{11},\mathrm{30},\mathrm{85},\mathrm{248},...,... \\ $$

Question Number 91774    Answers: 0   Comments: 0

∫_0 ^∞ ((sin^k (x))/x^k )dx for any k>0

$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}\:^{{k}} \left({x}\right)}{{x}^{{k}} }{dx}\:{for}\:{any}\:{k}>\mathrm{0} \\ $$

Question Number 91771    Answers: 0   Comments: 1

∫_0 ^∞ ((sin^3 (x))/x^2 )dx

$$\int_{\mathrm{0}} ^{\infty} \frac{{sin}^{\mathrm{3}} \left({x}\right)}{{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 91770    Answers: 1   Comments: 2

y′′+3y=x^3 +3x

$${y}''+\mathrm{3}{y}={x}^{\mathrm{3}} +\mathrm{3}{x} \\ $$

Question Number 91763    Answers: 0   Comments: 0

Question Number 91760    Answers: 1   Comments: 3

Question Number 91753    Answers: 1   Comments: 3

∫3 (ln x)^2 dx = ??

$$\int\mathrm{3}\:\left(\mathrm{ln}\:{x}\right)^{\mathrm{2}} \:{dx}\:=\:?? \\ $$

Question Number 91750    Answers: 0   Comments: 2

(2x−y+1)dx = (x−4y+3)dy

$$\left(\mathrm{2}{x}−{y}+\mathrm{1}\right){dx}\:=\:\left({x}−\mathrm{4}{y}+\mathrm{3}\right){dy} \\ $$

Question Number 91735    Answers: 0   Comments: 1

∫_0 ^(π/2) ((tan^m α))^(1/k) dα for m>1

$$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \sqrt[{{k}}]{\mathrm{tan}^{{m}} \:\alpha}\:{d}\alpha\:{for}\:{m}>\mathrm{1} \\ $$

Question Number 91732    Answers: 0   Comments: 2

Find the least possible value of x 8x ≡ 24 (mod 16) .... (i) 3x ≡ 6 (mod 25) .... (ii)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{least}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{x} \\ $$$$\:\:\:\:\mathrm{8x}\:\equiv\:\mathrm{24}\:\left(\mathrm{mod}\:\mathrm{16}\right)\:\:\:\:\:....\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\mathrm{3x}\:\equiv\:\mathrm{6}\:\left(\mathrm{mod}\:\mathrm{25}\right)\:\:\:\:\:\:....\:\left(\mathrm{ii}\right) \\ $$

Question Number 91744    Answers: 1   Comments: 1

Question Number 91715    Answers: 0   Comments: 4

Question Number 91714    Answers: 0   Comments: 1

Question Number 91703    Answers: 0   Comments: 0

∫_(−∞) ^(+∞) f^2 (x)dx ∀f

$$\int_{−\infty} ^{+\infty} {f}^{\mathrm{2}} \left({x}\right){dx}\:\forall{f} \\ $$

Question Number 91690    Answers: 1   Comments: 1

Question Number 91689    Answers: 0   Comments: 5

sec^2 1^o +sec^2 2^o +sec^2 3^o +...+sec^2 89^o

$$\mathrm{sec}\:^{\mathrm{2}} \mathrm{1}^{{o}} +\mathrm{sec}\:^{\mathrm{2}} \mathrm{2}^{{o}} +\mathrm{sec}\:^{\mathrm{2}} \mathrm{3}^{{o}} +...+\mathrm{sec}\:^{\mathrm{2}} \mathrm{89}^{{o}} \\ $$

Question Number 91688    Answers: 0   Comments: 2

solve equations x^(x ) + y^y = 31 and x + y = 5

$${solve}\:{equations}\:{x}^{{x}\:} +\:{y}^{{y}} \:=\:\mathrm{31}\:{and}\:{x}\:+\:{y}\:=\:\mathrm{5} \\ $$

Question Number 91681    Answers: 1   Comments: 3

Se f((√3^(x)^(1/3) ) + 3^(x)^(1/3) ) = (x)^(1/3) , calcule ((f(2))/(f(1)))∙

$$\: \\ $$$$\:\boldsymbol{\mathrm{Se}}\:\:\boldsymbol{\mathrm{f}}\left(\sqrt{\mathrm{3}^{\sqrt[{\mathrm{3}}]{\boldsymbol{\mathrm{x}}}} }\:+\:\mathrm{3}^{\sqrt[{\mathrm{3}}]{\boldsymbol{\mathrm{x}}}} \right)\:=\:\sqrt[{\mathrm{3}}]{\boldsymbol{\mathrm{x}}},\:\:\boldsymbol{\mathrm{calcule}}\:\:\frac{\boldsymbol{\mathrm{f}}\left(\mathrm{2}\right)}{\boldsymbol{\mathrm{f}}\left(\mathrm{1}\right)}\centerdot \\ $$$$\: \\ $$

Question Number 91678    Answers: 0   Comments: 0

(y+2px)^2 = 2px^2 solve by Clairaut′s method

$$\left({y}+\mathrm{2}{px}\right)^{\mathrm{2}} \:=\:\mathrm{2}{px}^{\mathrm{2}} \\ $$$${solve}\:{by}\:{Clairaut}'{s}\:{method}\: \\ $$

Question Number 91668    Answers: 0   Comments: 0

∫e^x^2 erf(x) dx

$$\int{e}^{{x}^{\mathrm{2}} } \:{erf}\left({x}\right)\:{dx} \\ $$

Question Number 91667    Answers: 0   Comments: 6

find the limits of 1. u_n =Σ_(k=1) ^n (n/(n^2 +k^2 )) 2. v_n =Σ_(k=1) ^n (1/(√(n^2 +2kn)))

$$\mathrm{find}\:\mathrm{the}\:\mathrm{limits}\:\mathrm{of}\: \\ $$$$\mathrm{1}.\:\mathrm{u}_{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} +\mathrm{k}^{\mathrm{2}} }\:\:\: \\ $$$$\mathrm{2}.\:\mathrm{v}_{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\sqrt{\mathrm{n}^{\mathrm{2}} +\mathrm{2kn}}} \\ $$

Question Number 91660    Answers: 0   Comments: 4

Question Number 91656    Answers: 1   Comments: 2

Question Number 91655    Answers: 2   Comments: 12

A particle is projected with an intial velocity of u ms^(−1) at an angle α to the ground from a point O on the ground. Given that it clears two walls of hieght h and distances 2h and 4h respectively from O. (a) find the tangent of α (b) the maximum hieght (c) the range and period of the particle (d) show that u^2 = (4/(26)) gh please sir can you help me using the actual equations of projectile motion?

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{projected}\:\mathrm{with}\:\mathrm{an}\:\mathrm{intial}\:\mathrm{velocity}\:\mathrm{of}\:{u}\:\mathrm{ms}^{−\mathrm{1}} \:\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\alpha\:\mathrm{to}\: \\ $$$$\mathrm{the}\:\mathrm{ground}\:\mathrm{from}\:\mathrm{a}\:\mathrm{point}\:\mathrm{O}\:\mathrm{on}\:\mathrm{the}\:\mathrm{ground}.\:\mathrm{Given}\:\mathrm{that}\:\mathrm{it}\:\mathrm{clears} \\ $$$$\mathrm{two}\:\mathrm{walls}\:\mathrm{of}\:\mathrm{hieght}\:{h}\:\mathrm{and}\:\mathrm{distances}\:\mathrm{2h}\:\mathrm{and}\:\mathrm{4h}\:\mathrm{respectively}\:\mathrm{from}\:\mathrm{O}. \\ $$$$\left(\mathrm{a}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{tangent}\:\mathrm{of}\:\alpha \\ $$$$\left(\mathrm{b}\right)\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{hieght} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{the}\:\mathrm{range}\:\mathrm{and}\:\mathrm{period}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle} \\ $$$$\left(\mathrm{d}\right)\:\mathrm{show}\:\mathrm{that}\:{u}^{\mathrm{2}} \:=\:\frac{\mathrm{4}}{\mathrm{26}}\:\mathrm{g}{h}\: \\ $$$$\mathrm{please}\:\mathrm{sir}\:\mathrm{can}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me}\:\mathrm{using}\:\mathrm{the}\:\mathrm{actual}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{projectile}\:\mathrm{motion}? \\ $$$$ \\ $$

  Pg 1225      Pg 1226      Pg 1227      Pg 1228      Pg 1229      Pg 1230      Pg 1231      Pg 1232      Pg 1233      Pg 1234   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com