Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1230
Question Number 91631 Answers: 0 Comments: 1
$${find}\:{a}\:{equivalent}\:{of}\:\sum_{{k}=\mathrm{2}} ^{{n}} {ln}\left({k}\right) \\ $$
Question Number 91630 Answers: 0 Comments: 1
$$\mathrm{show}\:\mathrm{that}\: \\ $$$$\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{sin2x}}{\left(\mathrm{2}+\mathrm{cos2x}\right)^{\mathrm{2}} }\mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{\mathrm{x}} \right)\mathrm{dx} \\ $$$$=\frac{\pi}{\mathrm{16}}−\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{36}} \\ $$
Question Number 91624 Answers: 0 Comments: 4
Question Number 91622 Answers: 2 Comments: 1
$$\frac{\mathrm{d}\left(\mathrm{x}!\right)}{\mathrm{dx}}= \\ $$
Question Number 91621 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:{sin}\left({x}^{\mathrm{6}} \right){dx} \\ $$
Question Number 91620 Answers: 0 Comments: 1
$${let}\:{f}\left({x}\right)\:=\mathrm{2}\:{x}−\sqrt{{x}−\mathrm{1}} \\ $$$${find}\:\int\:\:\frac{{f}\left({x}\right)}{{f}^{−\mathrm{1}} \left({x}\right)}{dx}\:\:{and}\:\:\int\:{ln}\left(\frac{{f}\left({x}\right)}{{f}^{−\mathrm{1}} \left({x}\right)}\right){dx} \\ $$
Question Number 91619 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{2}} ^{+\infty} \:\frac{\left(−\mathrm{1}\right)^{\left[\mathrm{2}{x}\right]} }{{x}\left[{x}\right]−\mathrm{1}}{dx} \\ $$
Question Number 91615 Answers: 0 Comments: 2
$${hi}\:{every}\:{one}\:{is}\:{it}\:{right}\:{if}\:{we}\:{use}\:{tylor} \\ $$$${in}\:{this}\:{integration}\:{and}\:{if}\:{there}\:{were} \\ $$$${another}\:{way}\:{that}\:{will}\:{be}\:{very}\:{cool} \\ $$$$\int{sin}\left({x}^{\mathrm{4}} \right){dx}\: \\ $$$$ \\ $$$$ \\ $$
Question Number 91613 Answers: 1 Comments: 4
$${solve}\:{without}\:{using}\:{l}'{hopital} \\ $$$$\underset{{x}\rightarrow{e}} {{lim}}\frac{{ln}\left({x}\right)−\mathrm{1}}{\frac{{e}}{{x}}−\mathrm{1}} \\ $$
Question Number 91611 Answers: 0 Comments: 1
$$\:{find}\:{the}\:{volume}\:{of}\:{the}\:{region}\: \\ $$$${between}\:{curves}\:\left({xy}=\mathrm{4}\:{and}\:{x}+{y}=\mathrm{5}\right) \\ $$$${revolvex}\:{around}\:{the}\:{X}\:{axis} \\ $$
Question Number 91608 Answers: 0 Comments: 2
Question Number 91604 Answers: 0 Comments: 0
Question Number 91603 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} {xe}^{−{x}^{\mathrm{2}} −\left[{x}\right]} \:{dx} \\ $$
Question Number 91599 Answers: 0 Comments: 1
Question Number 91595 Answers: 1 Comments: 2
$$\mathrm{what}'\mathrm{s}\:\mathrm{meaning}\:\mathrm{of}\:\left(\overset{.} {\mathrm{x}}\right)\:\mathrm{or}\:\left(\overset{..} {\mathrm{x}}\right)? \\ $$$$\mathrm{are}\:\left(\overset{.} {\mathrm{x}}\right)=\mathrm{x}'? \\ $$
Question Number 91593 Answers: 1 Comments: 0
$$\int\:\frac{\mathrm{sec}\:{x}\:{csc}\:{x}\:{dx}}{\mathrm{ln}\left(\mathrm{tan}\:^{\mathrm{2}} {x}\right)}\:? \\ $$
Question Number 91588 Answers: 0 Comments: 2
$${what}\:{is}\:{f}^{−\mathrm{1}} \:{for}\:{f}\left({x}\right)=\lfloor{x}\rfloor?? \\ $$
Question Number 91578 Answers: 0 Comments: 2
$$ \\ $$$${f}\left(\frac{\mathrm{1}}{{x}}\right)+\mathrm{2}{f}\left({x}\right)=\:\frac{\mathrm{4}{x}^{\mathrm{3}} +\mathrm{6}{x}}{\mathrm{3}{x}^{\mathrm{2}} } \\ $$$${f}\left({x}\right)=? \\ $$
Question Number 91568 Answers: 2 Comments: 0
Question Number 91560 Answers: 0 Comments: 2
$${x}=\frac{\mathrm{1}+\sqrt{\mathrm{2004}}}{\mathrm{2}} \\ $$$$\mathrm{4}{x}^{\mathrm{3}} −\mathrm{2007}{x}−\mathrm{2000}=? \\ $$
Question Number 91558 Answers: 2 Comments: 1
$$\left({x}^{\mathrm{2}} +\mathrm{1}\right){y}'+{y}^{\mathrm{2}} +\mathrm{1}\:=\:\mathrm{0}\: \\ $$
Question Number 91555 Answers: 1 Comments: 4
Question Number 91542 Answers: 2 Comments: 3
$$\int\:\frac{{x}^{\mathrm{3}} }{\mathrm{2}{x}+\mathrm{1}}\:{dx}\:=\:? \\ $$
Question Number 91534 Answers: 0 Comments: 3
$$\int_{\mathrm{1}} ^{\infty} \frac{{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 91521 Answers: 0 Comments: 8
$${given}\:{that}\:{the}\: \\ $$$${composite} \\ $$$${function}\:{f}^{\mathrm{2}} \left({x}\right)\:=\:\mathrm{64}{x}+\mathrm{45}\: \\ $$$${find}\:{f}\left({x}\right)\: \\ $$
Question Number 91509 Answers: 0 Comments: 2
$${does}\:{anyone}\:{know}\:{Glauss}'\:{law}\:{for}\:{magnetism}?\:{tanks} \\ $$
Pg 1225 Pg 1226 Pg 1227 Pg 1228 Pg 1229 Pg 1230 Pg 1231 Pg 1232 Pg 1233 Pg 1234
Terms of Service
Privacy Policy
Contact: info@tinkutara.com