Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1229
Question Number 89977 Answers: 0 Comments: 2
Question Number 89973 Answers: 1 Comments: 1
$${x}\:\frac{{dy}}{{dx}}\:−{y}\:=\:{x}^{\mathrm{2}} \:\mathrm{tan}\:\left(\frac{{y}}{{x}}\right)\: \\ $$
Question Number 89970 Answers: 0 Comments: 1
$$\mathrm{xy}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{y}^{\mathrm{2}} \left(\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\right)\: \\ $$
Question Number 89955 Answers: 1 Comments: 2
$$\mathrm{9}^{\mathrm{x}+\mathrm{1}} \nmid\mathrm{28}\left(\mathrm{3}^{\mathrm{x}} \right)+\mathrm{3}=\mathrm{0} \\ $$
Question Number 89953 Answers: 0 Comments: 1
$$\mathrm{solvethefollowingequation} \\ $$$$\mathrm{5}^{\mathrm{2x}+\mathrm{y}} =\mathrm{625and2}^{\mathrm{4x}\nmid\mathrm{2y}} =\frac{\mathrm{1}}{\mathrm{6}} \\ $$
Question Number 89951 Answers: 0 Comments: 1
$$\mathrm{log}\:_{\mathrm{2}} \:\left(\mathrm{sin}\:\left({x}+\frac{\mathrm{5}\pi}{\mathrm{12}}\right)\right)\:+\:\mathrm{log}\:_{\mathrm{2}} \left(\mathrm{sin}\:\left({x}+\frac{\pi}{\mathrm{12}}\right)\right)=−\mathrm{1} \\ $$
Question Number 89950 Answers: 0 Comments: 1
Question Number 89946 Answers: 1 Comments: 0
$$\int\underset{−\frac{\pi}{\mathrm{2}}} {\overset{\frac{\pi}{\mathrm{2}}} {\:}}\:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{e}^{\mathrm{sin}\:\mathrm{x}} } \\ $$
Question Number 89958 Answers: 0 Comments: 1
$${prove}\:{that}\:\left(\mathrm{1}+\mathrm{sin}\:{x}/\mathrm{1}+\mathrm{cos}\:\mathrm{3}\left(\mathrm{1sin}\:{x}/\mathrm{1}+\mathrm{cosec}\:{x}\right)={tanx}\right. \\ $$
Question Number 89956 Answers: 0 Comments: 1
$$\mathrm{simplify}\kappa\mathrm{giving}\kappa\mathrm{your}\kappa\mathrm{answer}\kappa\mathrm{in}\kappa\mathrm{index}\kappa\mathrm{form} \\ $$$$\sqrt{\frac{\mathrm{ac}^{\mathrm{2}} }{\mathrm{9a}^{\mathrm{2}} \mathrm{c}^{\mathrm{4}} }} \\ $$
Question Number 89938 Answers: 0 Comments: 1
$$\mathrm{If}\:\mathrm{x}\left(\mathrm{x}+\mathrm{1}\right)\:=\:\mathrm{1}\: \\ $$$$\mathrm{find}\:\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} −\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$
Question Number 89937 Answers: 0 Comments: 1
$${Prove}\:{that}\:{for}\:{all}\:{complex}\:{such}\:{as}\:\mid{z}\mid<\mathrm{1}= \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{z}^{{n}} }{\left({z}^{{n}} −\mathrm{1}\right)^{\mathrm{2}} }\:+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{nz}^{{n}} }{{z}^{{n}} −\mathrm{1}}\:=\:\mathrm{0}\: \\ $$
Question Number 89936 Answers: 1 Comments: 0
$${Prove}\:{that}\:\underset{{p}\geqslant\mathrm{1},{q}\geqslant\mathrm{1}} {\sum}\:\:\frac{\mathrm{1}}{{pq}\left({p}+{q}−\mathrm{1}\right)}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{3}}\: \\ $$
Question Number 89934 Answers: 0 Comments: 0
$$\left.{Let}\:{x}\in\right]\mathrm{0};\mathrm{1}\left[\:\:{Prove}\:{that}\right. \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{\mathrm{1}+{x}^{{n}} }\:+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−{x}\right)^{{n}} }{\mathrm{1}−{x}^{{n}} }\:=\:\mathrm{0} \\ $$
Question Number 89928 Answers: 1 Comments: 0
Question Number 89925 Answers: 0 Comments: 0
$${x}^{\mathrm{2}} \left({yy}''−{y}^{\mathrm{2}} \right)+{xyy}'\:=\:{y}\sqrt{{x}^{\mathrm{2}} \left({y}'\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }\: \\ $$
Question Number 89922 Answers: 0 Comments: 2
Question Number 89918 Answers: 0 Comments: 1
$$\int\:\frac{\mathrm{x}\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }\:\mathrm{dx}\: \\ $$
Question Number 89913 Answers: 1 Comments: 1
Question Number 89908 Answers: 0 Comments: 6
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equstion}: \\ $$$$\:\:\:\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:\:\:=\:\:\:\frac{\mathrm{y}_{\mathrm{0}} \:\:−\:\:\mathrm{2y}_{−\mathrm{1}} \:\:+\:\:\mathrm{y}_{−\mathrm{2}} }{\mathrm{h}^{\mathrm{2}} } \\ $$
Question Number 89907 Answers: 1 Comments: 0
$${If}\:{the}\:{sum}\:{of}\:\mathrm{4}\:{numbers}\:{is}\:{between} \\ $$$$\mathrm{53}\:{and}\:\mathrm{57}\:{then}\:{the}\:{arithmetic}\:{mean}\:{of} \\ $$$${the}\:{numbers}\:{could}\:{be}\:{one}\:{of}\:{the} \\ $$$${following} \\ $$$$ \\ $$$$\left.{a}\left.\right)\left.\mathrm{1}\left.\mathrm{1}\left..\mathrm{5}\:{b}\right)\mathrm{12}\:{c}\right)\mathrm{12}.\mathrm{5}\:{d}\right)\mathrm{13}\:{e}\right)\mathrm{14} \\ $$
Question Number 89906 Answers: 1 Comments: 0
$${Show}\:{that}\: \\ $$$$\mathrm{2}{x}^{\mathrm{7}} −\mathrm{4}{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{2}} =\mathrm{6}{x}^{\mathrm{6}} +\mathrm{3} \\ $$$${Has}\:{no}\:{solution}\:{in}\:\mathbb{N} \\ $$
Question Number 89898 Answers: 0 Comments: 3
$${In}\:{a}\:{classroom}\:{when}\:{the}\:{students}\:{sit} \\ $$$$\mathrm{2}\:{per}\:{bench},\:\mathrm{11}\:{students}\:{are}\:{left}\:{with} \\ $$$${no}\:{sits}.\:{And}\:{when}\:{they}\:{sit}\:\mathrm{3}\:{per}\:{bench} \\ $$$$\mathrm{7}\:{benches}\:{are}\:{left}\:{empty}.\:{Determine}\:{the}\:{number} \\ $$$${of}\:{students}\:{in}\:{this}\:{classroom}. \\ $$
Question Number 89896 Answers: 0 Comments: 4
Question Number 89891 Answers: 0 Comments: 1
$${calculate}\:\int_{\frac{\mathrm{1}}{{e}}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}+{x}\right){dx} \\ $$
Question Number 89882 Answers: 2 Comments: 0
Pg 1224 Pg 1225 Pg 1226 Pg 1227 Pg 1228 Pg 1229 Pg 1230 Pg 1231 Pg 1232 Pg 1233
Terms of Service
Privacy Policy
Contact: info@tinkutara.com