Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1229
Question Number 86298 Answers: 0 Comments: 5
$${let}\:{x}^{{x}^{{x}^{\iddots} } } =\mathrm{2} \\ $$$${x}^{\mathrm{2}} =\mathrm{2} \\ $$$${x}=\pm\sqrt{\mathrm{2}} \\ $$$${then}\:{let}\:{x}^{{x}^{{x}^{\iddots} } } =\mathrm{4} \\ $$$${x}^{\mathrm{4}} =\mathrm{4} \\ $$$${x}=\pm\sqrt[{\mathrm{4}}]{\mathrm{4}}=\pm\sqrt{\mathrm{2}} \\ $$$${so}\:{we}\:{had}\:{prove}\:\mathrm{2}=\mathrm{4}\:{right}? \\ $$
Question Number 86295 Answers: 0 Comments: 0
Question Number 86294 Answers: 1 Comments: 0
$$\mathrm{y}\:=\:\mathrm{2x}\:+\:\left(\mathrm{y}'\right)^{\mathrm{2}} −\mathrm{4y}' \\ $$
Question Number 86374 Answers: 0 Comments: 1
$${calculate}\:{bycomplex}\:{method}\:\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$
Question Number 86282 Answers: 0 Comments: 7
Question Number 86288 Answers: 1 Comments: 0
$$\int\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{4}} \right)^{\mathrm{1}/\mathrm{4}} } \\ $$
Question Number 86269 Answers: 0 Comments: 1
$$\int\frac{{sec}^{\mathrm{2}} \left({x}\right)}{\left({tan}\left({x}\right)−\mathrm{1}\right)^{\mathrm{4}} \left({tan}\left({x}\right)−\mathrm{2}\right)}\:{dx} \\ $$
Question Number 86254 Answers: 1 Comments: 0
$$\int\:\sqrt{\mathrm{x}\sqrt{\mathrm{x}\sqrt{\mathrm{x}\sqrt{\mathrm{x}.......}}}}\:\:\:\mathrm{dx} \\ $$
Question Number 86247 Answers: 0 Comments: 3
$$\int_{\mathrm{0}} ^{\mathrm{8}} \int_{\mathrm{0}} ^{{x}^{\frac{\mathrm{2}}{\mathrm{3}}} } \:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{1}}\:{dy}\:{dx} \\ $$
Question Number 86246 Answers: 1 Comments: 0
$$\int\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}\:+\:{x}^{\mathrm{4}} }}\:{dx}\:=\:? \\ $$
Question Number 86244 Answers: 0 Comments: 0
Question Number 86242 Answers: 1 Comments: 0
$$\:\boldsymbol{\mathrm{Find}}\:\:\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{C}}\mathrm{F}+\boldsymbol{\mathrm{P}}\mathrm{I}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{following}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}}: \\ $$$$\:\:\:\frac{\boldsymbol{\mathrm{d}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{dx}}^{\mathrm{2}} }+\mathrm{3}\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}+\mathrm{2}\boldsymbol{\mathrm{y}}=\:\boldsymbol{\mathrm{e}}^{\mathrm{2}\boldsymbol{\mathrm{x}}} \:\boldsymbol{\mathrm{sinx}}\:. \\ $$$$\: \\ $$$$ \\ $$
Question Number 86240 Answers: 1 Comments: 0
$$\mathrm{use}\:\mathrm{the}\:\mathrm{Chinese}\:\mathrm{Remainder}\:\mathrm{theorem}\:\mathrm{to}\:\mathrm{find} \\ $$$$\:\:{x}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:{x}\:\equiv\:\mathrm{2}\left(\mathrm{mod}\:\mathrm{3}\right) \\ $$$$\mathrm{2}{x}\:\equiv\:\mathrm{3}\left(\mathrm{mod}\:\mathrm{5}\right) \\ $$$$\:\mathrm{3}{x}\equiv\:\mathrm{4}\left(\:\mathrm{mod}\:\mathrm{7}\right) \\ $$
Question Number 86231 Answers: 2 Comments: 1
Question Number 86230 Answers: 1 Comments: 0
$${is}\:\:\left(−\mathrm{1}\right)^{\frac{{m}}{{n}}} \:=\left(\sqrt[{{n}}]{\left(−\mathrm{1}\:\right)^{{m}} }\right)\:{or}\:=\left(\sqrt[{{n}}]{−\mathrm{1}}\right)^{{m}} \\ $$$${or}\:{both}\:{of}\:{them}\:{are}\:{fault}\:{and}\:{why}\:? \\ $$
Question Number 86258 Answers: 1 Comments: 3
$${calculate}\:{I}=\int_{\mathrm{1}} ^{+\infty} \frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$
Question Number 86256 Answers: 2 Comments: 0
Question Number 86260 Answers: 1 Comments: 1
Question Number 86214 Answers: 0 Comments: 8
Question Number 86206 Answers: 0 Comments: 3
$$\mathrm{1}.\mathrm{line}:\boldsymbol{\mathrm{y}}=−\boldsymbol{\mathrm{x}}+\mathrm{4}\:\:,\mathrm{meets}\::\:\boldsymbol{\mathrm{xy}}=\mathrm{1}\:\mathrm{at}:\boldsymbol{\mathrm{A}},\boldsymbol{\mathrm{B}}. \\ $$$$\:\:\:\:\:\:\Rightarrow\:\:\mathrm{S}_{\mathrm{O}\overset{\bigtriangleup} {\mathrm{A}B}} =?\:\left(\mathrm{O}=\mathrm{origin}\:\mathrm{of}\:\mathrm{cordinates}\right) \\ $$$$\mathrm{2}.\mathrm{find}\::\mathrm{center}\:\mathrm{area}\:\mathrm{of}\:\mathrm{region}\:\mathrm{bonded}\:\mathrm{by} \\ $$$$\mathrm{corve}:\:\:\sqrt{\frac{\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{a}}}}+\sqrt{\frac{\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{b}}}}=\mathrm{1},\mathrm{and}\:\boldsymbol{\mathrm{x}},\boldsymbol{\mathrm{y}}\:\mathrm{axes}. \\ $$$$\left(\boldsymbol{\mathrm{a}}\neq\boldsymbol{\mathrm{b}}\right)\in\boldsymbol{\mathrm{R}}^{+} \\ $$
Question Number 86204 Answers: 0 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{2}} \:\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\:+\:\mathrm{x}}{\sqrt[{\mathrm{x}\:\:}]{\mathrm{1}+\mathrm{e}}\:−\mathrm{e}\:}\:? \\ $$
Question Number 86198 Answers: 0 Comments: 7
$$\mathrm{any}\:\mathrm{methods}\:\mathrm{to}\:\mathrm{sketch}\:\mathrm{these}\:\mathrm{curves} \\ $$$$\:\mathrm{r}\:=\:\mathrm{a}\left(\mathrm{1}−\mathrm{cos}\theta\right) \\ $$$$\:\mathrm{r}=\:\mathrm{a}\:+\:\mathrm{b}\:\mathrm{cos}\theta\:\:{a}>{b} \\ $$$$\:\mathrm{r}=\:\mathrm{a}\:+\:\mathrm{bcos}\theta\:\:\:{a}<{b} \\ $$
Question Number 86193 Answers: 1 Comments: 8
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{4}{x}^{\mathrm{2}} +\frac{\mathrm{6}{x}^{\mathrm{2}} }{\sqrt{\mathrm{9}{x}^{\mathrm{4}} +\mathrm{9sin}\:^{\mathrm{2}} {x}}}}{\mathrm{3}{x}−\frac{\mathrm{4}{x}^{\mathrm{3}} −{x}}{\mathrm{2}{x}+\mathrm{1}}}\:=\:? \\ $$
Question Number 86189 Answers: 1 Comments: 0
$${Given}\:{that}\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=\frac{\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{7}}{\mathrm{8}}\:{and}\:\boldsymbol{\mathrm{g}}\left(\boldsymbol{\mathrm{x}}\right)=\:\frac{\mathrm{3}\boldsymbol{\mathrm{x}}−\mathrm{6}}{\mathrm{6}},\:{find} \\ $$$$\left(\mathrm{a}\right)\:\boldsymbol{\mathrm{g}}\left(\mathrm{6}\right),\:\left(\mathrm{b}\right)\boldsymbol{\mathrm{f}}^{−\mathrm{1}} \left(\boldsymbol{\mathrm{x}}\right)\:\:\:\left(\mathrm{c}\right)\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\boldsymbol{\mathrm{x}}\:{if}\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=\boldsymbol{\mathrm{g}}\left(\boldsymbol{\mathrm{x}}\right) \\ $$
Question Number 86168 Answers: 1 Comments: 0
$$\mathrm{given}\: \\ $$$$\mathrm{sin}\:\mathrm{x}+\mathrm{sin}\:\mathrm{y}\:=\:\mathrm{2sin}\:\left(\mathrm{x}+\mathrm{y}\right)\: \\ $$$$\mathrm{x}+\mathrm{y}\:\neq\:\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{tan}\:\frac{\mathrm{x}}{\mathrm{2}}\:\mathrm{tan}\:\frac{\mathrm{y}}{\mathrm{2}}\:=\: \\ $$
Question Number 86167 Answers: 1 Comments: 3
$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{\mathrm{arc}\:\mathrm{tan}\:\left(\sqrt{\mathrm{tan}\:\mathrm{x}}\right)}{\mathrm{tan}\:\mathrm{x}}\:\mathrm{dx}\: \\ $$
Pg 1224 Pg 1225 Pg 1226 Pg 1227 Pg 1228 Pg 1229 Pg 1230 Pg 1231 Pg 1232 Pg 1233
Terms of Service
Privacy Policy
Contact: info@tinkutara.com