Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1228

Question Number 90087    Answers: 0   Comments: 1

Σ_(k = 1) ^∞ (1/k^k ) = ?

$$\underset{{k}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{{k}} }\:=\:? \\ $$

Question Number 90080    Answers: 0   Comments: 0

Question Number 90077    Answers: 0   Comments: 3

lim_(x→∞) (sin (x+(1/x))−sin(x))=?

$${lim}_{{x}\rightarrow\infty} \left(\mathrm{sin}\:\left({x}+\frac{\mathrm{1}}{{x}}\right)−{sin}\left({x}\right)\right)=? \\ $$

Question Number 90075    Answers: 0   Comments: 1

$$ \\ $$

Question Number 90073    Answers: 0   Comments: 0

$$ \\ $$

Question Number 90092    Answers: 0   Comments: 1

G((√(x+5))) = x G(x^2 ) = x^a −b find a+b

$$\mathrm{G}\left(\sqrt{\mathrm{x}+\mathrm{5}}\right)\:=\:\mathrm{x} \\ $$$$\mathrm{G}\left(\mathrm{x}^{\mathrm{2}} \right)\:=\:\mathrm{x}^{\mathrm{a}} −\mathrm{b} \\ $$$$\mathrm{find}\:\mathrm{a}+\mathrm{b}\: \\ $$

Question Number 90069    Answers: 2   Comments: 3

Question Number 90060    Answers: 0   Comments: 1

lim_(x→0) ((ln (1+sin x))/(((2+x))^(1/(3 )) − ((2+3x))^(1/3) )) = ?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ln}\:\left(\mathrm{1}+\mathrm{sin}\:\mathrm{x}\right)}{\sqrt[{\mathrm{3}\:\:}]{\mathrm{2}+\mathrm{x}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{2}+\mathrm{3x}}}\:=\:? \\ $$

Question Number 90058    Answers: 1   Comments: 1

Question Number 90055    Answers: 0   Comments: 1

Question Number 90049    Answers: 0   Comments: 0

Question Number 90048    Answers: 1   Comments: 0

5^(√x) −5^(x−7) = 100

$$\mathrm{5}^{\sqrt{\mathrm{x}}} \:−\mathrm{5}^{\mathrm{x}−\mathrm{7}} \:=\:\mathrm{100} \\ $$

Question Number 90046    Answers: 0   Comments: 0

bhz

$${bhz} \\ $$

Question Number 90044    Answers: 0   Comments: 2

calculste ∫_0 ^1 sin([2x] −[(1/x)])dx

$${calculste}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{sin}\left(\left[\mathrm{2}{x}\right]\:−\left[\frac{\mathrm{1}}{{x}}\right]\right){dx} \\ $$

Question Number 90043    Answers: 0   Comments: 0

calculate f(a) =∫_0 ^∞ ((arctan(ax))/(x^2 +a^2 ))dx with a>0

$${calculate}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({ax}\right)}{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx}\:{with}\:{a}>\mathrm{0} \\ $$

Question Number 90042    Answers: 0   Comments: 1

calculste I =∫_0 ^(+∞) ((ch(cos(2x))dx)/(x^2 +4)) and J =∫_0 ^∞ ((cos(2chx)dx)/(x^2 +4)) compare I and J

$${calculste}\:{I}\:=\int_{\mathrm{0}} ^{+\infty} \:\frac{{ch}\left({cos}\left(\mathrm{2}{x}\right)\right){dx}}{{x}^{\mathrm{2}} \:+\mathrm{4}} \\ $$$${and}\:{J}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left(\mathrm{2}{chx}\right){dx}}{{x}^{\mathrm{2}} \:+\mathrm{4}} \\ $$$${compare}\:{I}\:{and}\:{J} \\ $$

Question Number 90041    Answers: 1   Comments: 0

calculste ∫_0 ^∞ ((xarctan(2x))/(9+2x^2 ))dx

$${calculste}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xarctan}\left(\mathrm{2}{x}\right)}{\mathrm{9}+\mathrm{2}{x}^{\mathrm{2}} }{dx}\: \\ $$

Question Number 90040    Answers: 0   Comments: 1

find ∫_(−∞) ^(+∞) ((ch(acosx +bsinx))/(x^2 −x+1))dx a and b reals given

$${find}\:\:\int_{−\infty} ^{+\infty} \:\:\frac{{ch}\left({acosx}\:+{bsinx}\right)}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}{dx} \\ $$$${a}\:{and}\:{b}\:{reals}\:{given} \\ $$

Question Number 90038    Answers: 0   Comments: 0

Σ_(n=1) ^∞ (H_n /n^k )=S_k H_q =Σ_(p=1) ^q (1/p) Is there a simple from for S_k

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} }{{n}^{{k}} }={S}_{{k}} \:\:\:\:\:\:\:{H}_{{q}} =\underset{{p}=\mathrm{1}} {\overset{{q}} {\sum}}\frac{\mathrm{1}}{{p}} \\ $$$${Is}\:{there}\:{a}\:{simple}\:{from}\:{for}\:{S}_{{k}} \\ $$

Question Number 90030    Answers: 0   Comments: 0

Question Number 90024    Answers: 0   Comments: 2

sinh^(−1) [ln(x + (√(x^2 + 1)) )] = ?

$$\mathrm{sinh}^{−\mathrm{1}} \left[\mathrm{ln}\left({x}\:+\:\sqrt{{x}^{\mathrm{2}} \:+\:\mathrm{1}}\:\right)\right]\:=\:? \\ $$

Question Number 90023    Answers: 1   Comments: 0

∫ e^(∣x∣) dx = ???

$$\:\int\:{e}^{\mid{x}\mid} \:{dx}\:=\:??? \\ $$

Question Number 90019    Answers: 1   Comments: 0

find the gcd(2467, 1367)

$$\mathrm{find}\:\mathrm{the}\:\mathrm{gcd}\left(\mathrm{2467},\:\mathrm{1367}\right) \\ $$

Question Number 90018    Answers: 1   Comments: 2

expand , ln(1 + sin x) right up to the term in x^3

$$\mathrm{expand}\:,\:\mathrm{ln}\left(\mathrm{1}\:+\:\mathrm{sin}\:{x}\right)\:\mathrm{right}\:\mathrm{up}\:\mathrm{to}\:\mathrm{the}\:\mathrm{term}\:\mathrm{in}\:{x}^{\mathrm{3}} \\ $$

Question Number 90013    Answers: 1   Comments: 2

−p^2 +2027=−q^2 p+q=?

$$−{p}^{\mathrm{2}} +\mathrm{2027}=−{q}^{\mathrm{2}} \\ $$$${p}+{q}=? \\ $$

Question Number 90011    Answers: 0   Comments: 6

  Pg 1223      Pg 1224      Pg 1225      Pg 1226      Pg 1227      Pg 1228      Pg 1229      Pg 1230      Pg 1231      Pg 1232   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com