Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1228
Question Number 92151 Answers: 0 Comments: 1
$$\mathrm{If}\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}\:\mathrm{are}\:\mathrm{positive}\:\mathrm{integers}\: \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{value}\: \\ $$$$\mathrm{pq}\:+\:\mathrm{2p}+\mathrm{2q}\:=\:\mathrm{217}\: \\ $$$$\mathrm{find}\:\mathrm{p}+\mathrm{q}\: \\ $$
Question Number 92146 Answers: 1 Comments: 1
$${how}\:{do}\:{i}\:{find}\:{integers}\:{that}\:{satisfy} \\ $$$${x}^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{2017} \\ $$
Question Number 92143 Answers: 0 Comments: 1
$${fond}\int\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 92138 Answers: 2 Comments: 0
$$\int\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$
Question Number 92137 Answers: 0 Comments: 2
$$\int\frac{\mathrm{2}{x}}{\mathrm{1}+{x}} \\ $$
Question Number 92135 Answers: 0 Comments: 5
$${a}^{{x}} \:=\:\mathrm{log}\:_{{a}} \:\left({x}\right) \\ $$$${a}=? \\ $$
Question Number 92134 Answers: 0 Comments: 1
$${find}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:\frac{{e}^{{x}} }{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}\: \\ $$
Question Number 92133 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\:{decompose}\:{F}\left({x}\right)\:=\frac{\mathrm{1}}{{x}^{\mathrm{5}} −\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{2}} ^{+\infty} \:\frac{{dx}}{{x}^{\mathrm{5}} −\mathrm{1}} \\ $$
Question Number 92126 Answers: 0 Comments: 0
$$\int\:\sqrt{\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}}{{x}+\mathrm{1}}}\:{dx}\: \\ $$
Question Number 92120 Answers: 0 Comments: 0
$$\int_{−\mathrm{3}} ^{\mathrm{4}} \lfloor{x}.\lceil{x}^{\mathrm{2}} \rceil\rfloor\:{dx} \\ $$
Question Number 92119 Answers: 0 Comments: 3
$${show}\:{that}\: \\ $$$$\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{\lfloor{x}\rfloor^{\mathrm{2}} }{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}\:{dy}}{\mathrm{1}−{xy}} \\ $$
Question Number 92118 Answers: 1 Comments: 3
$$\mathrm{If}\:\:\mathrm{9}^{\mathrm{2x}+\mathrm{1}\:\:\:} =\:\:\frac{\mathrm{81}^{\mathrm{x}−\mathrm{2}} }{\mathrm{3x}}\:\:.\:\:\:\:\:\:\:\:\:\:\:\mathrm{find}\:\mathrm{x} \\ $$
Question Number 92117 Answers: 0 Comments: 3
$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{if}: \\ $$$$\sqrt{\mathrm{x}}+\mathrm{y}=\mathrm{11}\:\:\:\:\mathrm{and}\:\:\:\:\mathrm{x}+\sqrt{\mathrm{y}}=\mathrm{7} \\ $$
Question Number 92116 Answers: 0 Comments: 0
$${what}\:{is}\:{the}\:{super}\:{hexagon}? \\ $$
Question Number 92115 Answers: 1 Comments: 0
Question Number 92114 Answers: 1 Comments: 0
Question Number 92102 Answers: 2 Comments: 3
$${how}\:{can}\:{we}\:{factorize}\:\:\:{x}^{\mathrm{5}} −\mathrm{1}\:\:? \\ $$
Question Number 92089 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cosx}+{sinx}\right){dx} \\ $$
Question Number 92088 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cosx}\right)\:\:{and}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{ln}\left({sinx}\right){dx} \\ $$
Question Number 92087 Answers: 0 Comments: 1
$$\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}}{dx} \\ $$
Question Number 92086 Answers: 0 Comments: 0
$${f}\:{and}\:{g}\:{are}\:{two}\:{continous}\:{function}\:{on}\:{R}\:{find} \\ $$$${we}\:{suppose}\:{f}\:{and}\:{g}\:{odd}\:\:{determine}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{gof}\left({x}\right)−{fog}\left({x}\right)}{{x}} \\ $$
Question Number 92084 Answers: 1 Comments: 0
Question Number 92082 Answers: 1 Comments: 2
$${let}\:{f}\left(\alpha\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {x}\sqrt{{x}^{\mathrm{2}} −{x}+\alpha}{dx}\:\:\:\:\:\:{with}\:\alpha>\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left.\mathrm{1}\right)\:{explicit}\:\:{f}\left(\alpha\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left(\alpha\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{xdx}}{\sqrt{{x}^{\mathrm{2}} −{x}+\alpha}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:{intehrals}\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}\sqrt{{x}^{\mathrm{2}} −{x}+\sqrt{\mathrm{2}}}{dx}\:{snd} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{xdx}}{\sqrt{{x}^{\mathrm{2}} −{x}+\sqrt{\mathrm{2}}}} \\ $$
Question Number 92081 Answers: 0 Comments: 0
$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}^{\mathrm{3}} −\mathrm{3}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}{dx} \\ $$
Question Number 92080 Answers: 0 Comments: 0
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{sin}\left(\mathrm{2}{shx}\right)\:−{sh}\left(\mathrm{2}{sinx}\right)}{{e}^{{x}} −\mathrm{1}} \\ $$
Question Number 92079 Answers: 0 Comments: 1
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{{e}^{{sin}^{\mathrm{2}} {x}} −{e}^{{x}^{\mathrm{3}} −\mathrm{2}{x}} }{{x}^{\mathrm{2}} } \\ $$
Pg 1223 Pg 1224 Pg 1225 Pg 1226 Pg 1227 Pg 1228 Pg 1229 Pg 1230 Pg 1231 Pg 1232
Terms of Service
Privacy Policy
Contact: info@tinkutara.com