Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1228

Question Number 85105    Answers: 1   Comments: 0

Question Number 85104    Answers: 1   Comments: 2

Given { ((x^2 −2xy−3x = −1)),((4y^2 −2xy+6y = −1)) :} find 2y − x

$$\mathrm{Given}\: \\ $$$$\begin{cases}{\mathrm{x}^{\mathrm{2}} −\mathrm{2xy}−\mathrm{3x}\:=\:−\mathrm{1}}\\{\mathrm{4y}^{\mathrm{2}} −\mathrm{2xy}+\mathrm{6y}\:=\:−\mathrm{1}}\end{cases} \\ $$$$\mathrm{find}\:\mathrm{2y}\:−\:\mathrm{x} \\ $$

Question Number 85103    Answers: 0   Comments: 0

Question Number 85097    Answers: 1   Comments: 0

∫_(−π) ^π x^(2020) (sin x+cos x) dx = 8 find ∫_(−π) ^π x^(2020) cos x dx = ?

$$\underset{−\pi} {\overset{\pi} {\int}}\:\mathrm{x}^{\mathrm{2020}} \:\left(\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\right)\:\mathrm{dx}\:=\:\mathrm{8} \\ $$$$\mathrm{find}\:\underset{−\pi} {\overset{\pi} {\int}}\:\mathrm{x}^{\mathrm{2020}} \:\mathrm{cos}\:\mathrm{x}\:\mathrm{dx}\:=\:? \\ $$

Question Number 85091    Answers: 0   Comments: 1

Question Number 85088    Answers: 0   Comments: 1

Question Number 85083    Answers: 0   Comments: 1

a^3 −b^3 =...?

$${a}^{\mathrm{3}} −{b}^{\mathrm{3}} =...? \\ $$

Question Number 85074    Answers: 1   Comments: 1

Question Number 85073    Answers: 0   Comments: 1

Prove by mathematical induction that 2002^(n+2) +2003^(2n+1) is divisible by 4005

$${Prove}\:{by}\:{mathematical}\:{induction}\:{that} \\ $$$$\mathrm{2002}^{{n}+\mathrm{2}} +\mathrm{2003}^{\mathrm{2}{n}+\mathrm{1}} \:\:\:\:{is}\:{divisible}\:{by}\:\mathrm{4005} \\ $$

Question Number 85068    Answers: 0   Comments: 3

Question Number 85061    Answers: 1   Comments: 3

lim_(x→0) ((x tan2x−2x tan(x))/((1−cos(2x))^2 ))

$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{x}\:{tan}\mathrm{2}{x}−\mathrm{2}{x}\:{tan}\left({x}\right)}{\left(\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)\right)^{\mathrm{2}} } \\ $$

Question Number 85059    Answers: 1   Comments: 0

Question Number 85057    Answers: 0   Comments: 1

find lim_(x→0) ln (sin xcos (1/x)+1) if it exits.

$${find}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}ln}\:\left(\mathrm{sin}\:{x}\mathrm{cos}\:\frac{\mathrm{1}}{{x}}+\mathrm{1}\right)\:{if}\:{it}\:{exits}. \\ $$

Question Number 85050    Answers: 1   Comments: 0

(x−4y+3)dx = (x−5y+4)dy

$$\left(\mathrm{x}−\mathrm{4y}+\mathrm{3}\right)\mathrm{dx}\:=\:\left(\mathrm{x}−\mathrm{5y}+\mathrm{4}\right)\mathrm{dy} \\ $$

Question Number 85041    Answers: 0   Comments: 0

Question Number 85036    Answers: 0   Comments: 1

If A= [((x x x )),((4_(2 ) −2_3 1_4 )) ]findX if p(A)=3

$${If}\:{A}=\begin{bmatrix}{{x}\:\:\:\:{x}\:\:\:{x}\:\:}\\{\underset{\mathrm{2}\:\:} {\mathrm{4}}\:−\underset{\mathrm{3}} {\mathrm{2}}\:\:\:\underset{\mathrm{4}} {\mathrm{1}}}\end{bmatrix}{findX}\:{if}\:{p}\left({A}\right)=\mathrm{3} \\ $$$$ \\ $$$$ \\ $$

Question Number 85021    Answers: 0   Comments: 0

lim_(x→0) ((tan^4 (x) cot(ln^3 (x+1))ln(sin^3 (x)cos^2 (x)+1))/(sin((√(x^2 +2)) −(√2))ln(x^2 +1)))

$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{tan}^{\mathrm{4}} \left({x}\right)\:{cot}\left({ln}^{\mathrm{3}} \left({x}+\mathrm{1}\right)\right){ln}\left({sin}^{\mathrm{3}} \left({x}\right){cos}^{\mathrm{2}} \left({x}\right)+\mathrm{1}\right)}{{sin}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}\:−\sqrt{\mathrm{2}}\right){ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$

Question Number 85020    Answers: 0   Comments: 4

solve integration ∫_1 ^2 x d⌊x^2 ⌋

$${solve}\:{integration} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} {x}\:{d}\lfloor{x}^{\mathrm{2}} \rfloor \\ $$

Question Number 85009    Answers: 1   Comments: 1

calculate ∫_0 ^∞ (x^n /(sh(x)))dx with n integr natural

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{n}} }{{sh}\left({x}\right)}{dx}\:{with}\:{n}\:{integr}\:{natural} \\ $$

Question Number 85003    Answers: 1   Comments: 7

x≤[x]<x+1 is that right if (x) was negative

$${x}\leqslant\left[{x}\right]<{x}+\mathrm{1} \\ $$$${is}\:{that}\:{right}\:{if}\:\left({x}\right)\:{was}\:{negative} \\ $$

Question Number 84998    Answers: 2   Comments: 0

what is coefficient of x^(29) in expression (1+x^5 +x^7 +x^9 )^(29)

$$\mathrm{what}\:\mathrm{is}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{x}^{\mathrm{29}} \\ $$$$\mathrm{in}\:\mathrm{expression}\:\left(\mathrm{1}+\mathrm{x}^{\mathrm{5}} +\mathrm{x}^{\mathrm{7}} +\mathrm{x}^{\mathrm{9}} \right)^{\mathrm{29}} \\ $$

Question Number 84997    Answers: 0   Comments: 2

log_(x/2) x^2 −log_(16x) x^3 +40log_(4x) (√x)=0

$${log}_{\frac{{x}}{\mathrm{2}}} {x}^{\mathrm{2}} −{log}_{\mathrm{16}{x}} {x}^{\mathrm{3}} +\mathrm{40}{log}_{\mathrm{4}{x}} \sqrt{{x}}=\mathrm{0} \\ $$

Question Number 84993    Answers: 2   Comments: 7

100 apples should be packed in three boxes and each box should contain at least 10 apples. in how many ways can this be done?

$$\mathrm{100}\:{apples}\:{should}\:{be}\:{packed}\:{in}\:{three} \\ $$$${boxes}\:{and}\:{each}\:{box}\:{should}\:{contain} \\ $$$${at}\:{least}\:\mathrm{10}\:{apples}.\:{in}\:{how}\:{many}\:{ways} \\ $$$${can}\:{this}\:{be}\:{done}? \\ $$

Question Number 84988    Answers: 0   Comments: 4

prove that sin^2 x+cos^2 y = tan^2 z+cot^2 z

$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{y}\:=\:\mathrm{tan}\:^{\mathrm{2}} \mathrm{z}+\mathrm{cot}\:^{\mathrm{2}} \mathrm{z} \\ $$

Question Number 84987    Answers: 0   Comments: 0

Inegrate ∫_0 ^4 (ϱ^t B_n sin ((nπ)/4))^2 tdt

$$\boldsymbol{{I}}{negrate} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{4}} \left(\varrho^{{t}} \boldsymbol{{B}}_{{n}} \mathrm{sin}\:\frac{{n}\pi}{\mathrm{4}}\right)^{\mathrm{2}} {tdt} \\ $$

Question Number 84986    Answers: 1   Comments: 1

5^((x+1)^2 ) + 625 ≤ 5^(x^2 +2) + 5^(2x+3)

$$\mathrm{5}^{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} } \:+\:\mathrm{625}\:\leqslant\:\mathrm{5}^{\mathrm{x}^{\mathrm{2}} +\mathrm{2}} \:+\:\mathrm{5}^{\mathrm{2x}+\mathrm{3}} \: \\ $$

  Pg 1223      Pg 1224      Pg 1225      Pg 1226      Pg 1227      Pg 1228      Pg 1229      Pg 1230      Pg 1231      Pg 1232   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com