Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1227

Question Number 90196    Answers: 0   Comments: 0

A bag contains 5 balls, 2 green and 3red They are selected without replacement till the remaining balls in the bag are of same colours. Let the random variable X be the number of selections possible 1) Determine the set of values of X 2)Determine the it′s expectation, its variance and its standard deviation.

$$\mathrm{A}\:\mathrm{bag}\:\mathrm{contains}\:\mathrm{5}\:\mathrm{balls},\:\mathrm{2}\:\mathrm{green}\:\mathrm{and}\:\mathrm{3red} \\ $$$$\mathrm{They}\:\mathrm{are}\:\mathrm{selected}\:\mathrm{without}\:\mathrm{replacement}\:\mathrm{till} \\ $$$$\mathrm{the}\:\mathrm{remaining}\:\mathrm{balls}\:\mathrm{in}\:\mathrm{the}\:\mathrm{bag}\:\mathrm{are}\:\mathrm{of}\:\mathrm{same}\:\mathrm{colours}. \\ $$$$\mathrm{Let}\:\mathrm{the}\:\mathrm{random}\:\mathrm{variable}\:\mathrm{X}\:\mathrm{be}\:\mathrm{the}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{selections}\:\mathrm{possible} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:\mathrm{X} \\ $$$$\left.\mathrm{2}\right)\mathrm{Determine}\:\mathrm{the}\:\mathrm{it}'\mathrm{s}\:\mathrm{expectation},\:\mathrm{its}\:\mathrm{variance} \\ $$$$\mathrm{and}\:\mathrm{its}\:\mathrm{standard}\:\mathrm{deviation}. \\ $$

Question Number 90192    Answers: 1   Comments: 1

∫_0 ^(infinity) (((1−e^(−x) )cosx dx)/x)

$$\int_{\mathrm{0}} ^{\mathrm{infinity}} \frac{\left(\mathrm{1}−\mathrm{e}^{−\mathrm{x}} \right)\mathrm{cosx}\:\mathrm{dx}}{\mathrm{x}} \\ $$

Question Number 90178    Answers: 1   Comments: 1

Question Number 90171    Answers: 2   Comments: 0

find ∫_0 ^2 (⌊x^2 ⌋+⌊x⌋^2 )dx

$${find}\:\int_{\mathrm{0}} ^{\mathrm{2}} \left(\lfloor{x}^{\mathrm{2}} \rfloor+\lfloor{x}\rfloor^{\mathrm{2}} \right){dx} \\ $$

Question Number 90168    Answers: 1   Comments: 4

Question Number 90158    Answers: 1   Comments: 2

Question Number 90157    Answers: 0   Comments: 0

Question Number 90151    Answers: 1   Comments: 1

find the limit of lim (1/(t((√(1+t))))−(1/t) t→0

$${find}\:{the}\:{limit}\:{of}\: \\ $$$${lim}\:\:\frac{\mathrm{1}}{{t}\left(\sqrt{\mathrm{1}+{t}}\right.}−\frac{\mathrm{1}}{{t}} \\ $$$${t}\rightarrow\mathrm{0} \\ $$

Question Number 90148    Answers: 0   Comments: 1

Question Number 90139    Answers: 0   Comments: 3

x = 2021^3 −2019^3 (√((x−2)/6)) = ?

$$\mathrm{x}\:=\:\mathrm{2021}^{\mathrm{3}} −\mathrm{2019}^{\mathrm{3}} \\ $$$$\sqrt{\frac{\mathrm{x}−\mathrm{2}}{\mathrm{6}}}\:=\:? \\ $$

Question Number 90138    Answers: 0   Comments: 2

∫x(√(3x^3 +7)) dx

$$\int{x}\sqrt{\mathrm{3}{x}^{\mathrm{3}} +\mathrm{7}}\:{dx} \\ $$

Question Number 90135    Answers: 1   Comments: 0

I_n =∫_(t=0) ^(+∞) (dt/((t+1)(t+2)...(t+n)))

$$\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{t}=\mathrm{0}} ^{+\infty} \frac{\mathrm{dt}}{\left(\mathrm{t}+\mathrm{1}\right)\left(\mathrm{t}+\mathrm{2}\right)...\left(\mathrm{t}+\mathrm{n}\right)} \\ $$

Question Number 90134    Answers: 0   Comments: 0

Question Number 90122    Answers: 0   Comments: 1

each vertex of a cube is to be labeled with an integer 1 through 8 , with each integer being used once,in such a way that the sum of the four numbers on the vertices of a face is the same for each face.Arrangements that can be obtained from each other through rotations of the cube are considered to be the same. Find all the arrangements

$${each}\:{vertex}\:{of}\:{a}\:{cube}\:{is}\:{to}\:{be}\:{labeled} \\ $$$${with}\:{an}\:{integer}\:\mathrm{1}\:{through}\:\mathrm{8}\:,\:{with} \\ $$$${each}\:{integer}\:{being}\:{used}\:{once},{in}\:{such} \\ $$$${a}\:{way}\:{that}\:{the}\:{sum}\:{of}\:{the}\:{four}\:{numbers} \\ $$$${on}\:{the}\:{vertices}\:{of}\:{a}\:{face}\:{is}\:{the}\:{same}\: \\ $$$${for}\:{each}\:{face}.{Arrangements}\:{that}\:{can} \\ $$$${be}\:{obtained}\:{from}\:{each}\:{other}\:{through} \\ $$$${rotations}\:{of}\:{the}\:{cube}\:{are}\:{considered} \\ $$$${to}\:{be}\:{the}\:{same}.\: \\ $$$${Find}\:{all}\:{the}\:{arrangements} \\ $$$$ \\ $$$$ \\ $$

Question Number 90162    Answers: 1   Comments: 0

Question Number 90160    Answers: 1   Comments: 0

Question Number 90161    Answers: 1   Comments: 0

Question Number 90113    Answers: 1   Comments: 0

∫_0 ^∞ e^(−x) ((1/(1−e^(−x) ))−(1/x))dx

$$\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} \left(\frac{\mathrm{1}}{\mathrm{1}−{e}^{−{x}} }−\frac{\mathrm{1}}{{x}}\right){dx} \\ $$

Question Number 90110    Answers: 0   Comments: 2

∫_((2/3)u) ^(2u) (e^(−(x/2)) /(2π (√((u−(1/2)x)(((3x)/2)−u))))) du (u > 0 )

$$\underset{\frac{\mathrm{2}}{\mathrm{3}}\mathrm{u}} {\overset{\mathrm{2u}} {\int}}\:\frac{\mathrm{e}^{−\frac{\mathrm{x}}{\mathrm{2}}} }{\mathrm{2}\pi\:\sqrt{\left(\mathrm{u}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}\right)\left(\frac{\mathrm{3x}}{\mathrm{2}}−\mathrm{u}\right)}}\:\mathrm{du}\: \\ $$$$\left(\mathrm{u}\:>\:\mathrm{0}\:\right) \\ $$

Question Number 90103    Answers: 0   Comments: 1

Question Number 90100    Answers: 1   Comments: 0

Question Number 90099    Answers: 0   Comments: 2

given the polar equation r = a^2 sin2θ show the tangents at the poles of this polar equation is. θ = {(π/4),((3π)/4),((5π)/4),((7π)/4)}

$$\:\mathrm{given}\:\mathrm{the}\:\mathrm{polar}\:\mathrm{equation} \\ $$$$\:{r}\:=\:{a}^{\mathrm{2}} \:\mathrm{sin2}\theta\:\:\mathrm{show}\:\mathrm{the}\:\mathrm{tangents}\:\mathrm{at}\: \\ $$$$\mathrm{the}\:\mathrm{poles}\:\mathrm{of}\:\mathrm{this}\:\mathrm{polar}\:\mathrm{equation}\:\mathrm{is}. \\ $$$$\:\theta\:=\:\left\{\frac{\pi}{\mathrm{4}},\frac{\mathrm{3}\pi}{\mathrm{4}},\frac{\mathrm{5}\pi}{\mathrm{4}},\frac{\mathrm{7}\pi}{\mathrm{4}}\right\} \\ $$

Question Number 90097    Answers: 0   Comments: 1

((√(3+(√8))))^x +((√(3−(√8))))^x = 6

$$\left(\sqrt{\mathrm{3}+\sqrt{\mathrm{8}}}\right)^{\mathrm{x}} \:+\left(\sqrt{\mathrm{3}−\sqrt{\mathrm{8}}}\right)^{\mathrm{x}} \:=\:\mathrm{6} \\ $$

Question Number 90090    Answers: 1   Comments: 0

xy (dy/dx) = y^2 + ((x^3 /(x^2 +1)))

$${xy}\:\frac{{dy}}{{dx}}\:=\:{y}^{\mathrm{2}} \:+\:\left(\frac{{x}^{\mathrm{3}} }{{x}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$

Question Number 90083    Answers: 0   Comments: 0

Question Number 90086    Answers: 0   Comments: 7

  Pg 1222      Pg 1223      Pg 1224      Pg 1225      Pg 1226      Pg 1227      Pg 1228      Pg 1229      Pg 1230      Pg 1231   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com