Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1227
Question Number 85198 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{x}\:\mathrm{if}\:\:\:\:^{\mathrm{3}} \sqrt{\mathrm{x}\:}+\sqrt{\mathrm{x}}=\sqrt{\mathrm{12}} \\ $$
Question Number 85195 Answers: 2 Comments: 0
$$\left.\mathrm{1}\right){find}\:{the}\:{area}\:{between} \\ $$$${y}^{\mathrm{2}} =\mathrm{3}{x}\:{and}\:{y}={x}^{\mathrm{2}} −\mathrm{2}{x} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}^{\mathrm{2}} \left(\theta\right)\:{cos}^{\mathrm{2}} \left(\theta\right)}{\left({cos}^{\mathrm{3}} \left(\theta\right)+{sin}^{\mathrm{3}} \left(\theta\right)\right)^{\mathrm{2}} }\:{d}\theta \\ $$
Question Number 85191 Answers: 2 Comments: 0
$$\int\frac{\mathrm{z}+\mathrm{2}}{\mathrm{z}} \\ $$
Question Number 85187 Answers: 0 Comments: 0
$${Show}\:{that}\:\forall\:{n},\:{p}\:\in\:\mathbb{N}^{\ast\:} \\ $$$${C}_{{n}−\mathrm{1}} ^{\:{p}−\mathrm{1}} +{C}_{{n}−\mathrm{1}} ^{\:{p}} ={C}_{{n}} ^{\:{p}} \\ $$
Question Number 85184 Answers: 0 Comments: 2
$$\mathrm{Serlea} \\ $$$$\mathrm{Shows}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{digit}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{100}^{\mathrm{25}} −\mathrm{25} \\ $$$$\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{4}. \\ $$
Question Number 85183 Answers: 0 Comments: 1
$$\mathrm{Hi}\:\mathrm{veterans} \\ $$$$\mathrm{Serlea}\:\left(\mathrm{1}\right) \\ $$$$ \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{three}\:\mathrm{digits}\:\mathrm{of}: \\ $$$$\mathrm{3005}^{\mathrm{11}} +\mathrm{3005}^{\mathrm{12}} +\mathrm{3005}^{\mathrm{13}} +...+\mathrm{3005}^{\mathrm{3002}} \\ $$$$ \\ $$$$ \\ $$
Question Number 85176 Answers: 2 Comments: 0
$$\mathrm{what}\:\mathrm{is}\:\mathrm{range}\: \\ $$$$\mathrm{function}\:\mathrm{y}\:=\:\sqrt{\mathrm{x}−\mathrm{1}}\:+\:\sqrt{\mathrm{5}−\mathrm{x}} \\ $$
Question Number 85169 Answers: 0 Comments: 5
$$\mathrm{find}\:\mathrm{the}\:\mathrm{n}^{\mathrm{th}} \:\mathrm{derivative}\:\mathrm{of}\:\mathrm{function} \\ $$$$\mathrm{y}\:=\:\sqrt{\mathrm{sin}\:\mathrm{x}}\:\mathrm{by}\:\mathrm{Leibniz}\:\mathrm{theorem} \\ $$
Question Number 85167 Answers: 0 Comments: 0
$${let}\:\varphi\left({x}\right)=\Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right)\:\:{find}\:\int_{\frac{\mathrm{1}}{\mathrm{3}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} {ln}\left(\varphi\left({x}\right)\right){dx} \\ $$
Question Number 85166 Answers: 1 Comments: 3
$${find}\:\int\:\:\left({x}^{\mathrm{2}} −\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$
Question Number 85165 Answers: 0 Comments: 1
$${sove}\:\:\left({sin}^{\mathrm{2}} {x}\right)\:{y}^{'} \:\:+\left({cosx}\right){y}\:={x} \\ $$
Question Number 85164 Answers: 0 Comments: 3
$${calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{arctan}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:+{n}+\mathrm{1}}\right) \\ $$
Question Number 85163 Answers: 0 Comments: 0
$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{arctan}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:+{n}}\right) \\ $$
Question Number 85162 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right){find}\:\int\:{ln}\left(\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}\right){dx} \\ $$
Question Number 85160 Answers: 1 Comments: 2
$$\left.\mathrm{1}\right)\:{find}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+{a}}\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{g}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{4}} \:+{a}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{find}\:{value}\:{of}\:{integrals}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{1}}\:,\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\mathrm{2}{x}^{\mathrm{4}} \:+\mathrm{8}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left({x}^{\mathrm{4}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left(\mathrm{2}{x}^{\mathrm{4}} +\mathrm{8}\right)^{\mathrm{2}} } \\ $$
Question Number 85158 Answers: 0 Comments: 0
$${calculate}\:{U}_{{n}} =\:\int_{−\frac{\mathrm{1}}{{n}}} ^{\frac{\mathrm{1}}{{n}}} \:{x}^{\mathrm{2}} \sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}{dx}\:\:\:\left({n}\:{integr}\:{and}\:{n}\geqslant\mathrm{2}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:\Sigma\:{U}_{{n}} \\ $$
Question Number 85153 Answers: 1 Comments: 1
$$\int\sqrt{\mathrm{4}\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{4}}\boldsymbol{\mathrm{dx}}\:=\:... \\ $$$$ \\ $$$$ \\ $$
Question Number 85148 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}+{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{3}} +{x}^{\mathrm{7}} }\:{dx} \\ $$
Question Number 85146 Answers: 2 Comments: 1
$$\mathrm{find}\:\mathrm{minimum}\:\&\:\mathrm{maximum}\:\mathrm{value}\: \\ $$$$\mathrm{of}\:\mathrm{function}\: \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\:−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{sin}\:\mathrm{x}−\frac{\mathrm{1}}{\mathrm{2}}\:,\:−\pi\leqslant\mathrm{x}\leqslant\pi \\ $$
Question Number 85142 Answers: 1 Comments: 0
$${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{{n}} \left[{x}^{\mathrm{2}} \right]{dx}\:={n}\left({n}^{\mathrm{2}} −\mathrm{1}\right)−\underset{{k}=\mathrm{1}} {\overset{{n}^{\mathrm{2}} −\mathrm{1}} {\sum}}\sqrt{{k}}\: \\ $$
Question Number 85131 Answers: 0 Comments: 4
$$\mathrm{what}\:\mathrm{procedure}\:\mathrm{will}\:\mathrm{you}\:\mathrm{use}\:\mathrm{to}\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{inverse}\:\mathrm{of} \\ $$$$\:\mathrm{A}\:=\:\begin{pmatrix}{\mathrm{2}}&{\mathrm{1}}&{\mathrm{9}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{1}}\\{\mathrm{3}}&{\mathrm{0}}&{\mathrm{3}}\end{pmatrix} \\ $$
Question Number 85130 Answers: 2 Comments: 0
$$\mathrm{given}\:\mathrm{f}\left(\mathrm{x}\right)=\:\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)\mathrm{sin}\:\mathrm{x}\:+\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\mathrm{cos}\:\mathrm{x} \\ $$$$\mathrm{find}\:\mathrm{masimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{function} \\ $$$$\left[\mathrm{f}\left(\mathrm{x}\right)\right]^{\mathrm{2}} \\ $$
Question Number 85129 Answers: 0 Comments: 2
$$\underset{{x}\rightarrow{e}} {\mathrm{lim}}\:\left[\underset{\mathrm{0}} {\overset{{e}} {\int}}\left(\frac{\mathrm{1}}{{x}}\right){dx}\right]\:=? \\ $$
Question Number 85127 Answers: 1 Comments: 4
$$\mathrm{evaluate}: \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt{{x}}\:\mathrm{ln}\left(\mathrm{sin}\:{x}\right) \\ $$$$ \\ $$
Question Number 85116 Answers: 0 Comments: 1
$$\:\mathrm{Reduce}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{to}\:\mathrm{Clairaut}'\mathrm{s}\:\mathrm{form} \\ $$$$\:\mathrm{and}\:\mathrm{find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:: \\ $$$$\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \boldsymbol{\mathrm{p}}^{\mathrm{2}} +\boldsymbol{\mathrm{yp}}\left(\mathrm{2}\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}\right)+\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\mathrm{0}\:\:\:\:\:\:\left({put}\:\boldsymbol{{y}}=\boldsymbol{{u}}\:{and}\:\boldsymbol{{xy}}=\boldsymbol{{v}}\right) \\ $$$$\: \\ $$
Question Number 85111 Answers: 1 Comments: 4
$$\:\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}}: \\ $$$$\:\bigstar.\left(\mathrm{1}+\mathrm{x}+\mathrm{xy}^{\mathrm{2}} \right)\mathrm{dy}+\left(\mathrm{y}+\mathrm{y}^{\mathrm{3}} \right)\mathrm{dx} \\ $$$$\: \\ $$
Pg 1222 Pg 1223 Pg 1224 Pg 1225 Pg 1226 Pg 1227 Pg 1228 Pg 1229 Pg 1230 Pg 1231
Terms of Service
Privacy Policy
Contact: info@tinkutara.com