Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1226

Question Number 92032    Answers: 0   Comments: 0

lim_(x→∞) ((2^(4n−1) ∗(n!)^2 )/((2n+1)∗[2n p(n)]^2 ))

$$\underset{{x}\rightarrow\infty} {{lim}}\frac{\mathrm{2}^{\mathrm{4}{n}−\mathrm{1}} \ast\left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\ast\left[\mathrm{2}{n}\:{p}\left({n}\right)\right]^{\mathrm{2}} } \\ $$

Question Number 92016    Answers: 1   Comments: 0

Question Number 92013    Answers: 1   Comments: 10

Solve: 2^x + 3^y = 72 ..... (i) 2^y + 3^x = 108 ..... (ii)

$$\mathrm{Solve}: \\ $$$$\:\:\:\mathrm{2}^{\mathrm{x}} \:\:+\:\:\mathrm{3}^{\mathrm{y}} \:\:\:=\:\:\mathrm{72}\:\:\:\:\:.....\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\mathrm{2}^{\mathrm{y}} \:\:+\:\:\mathrm{3}^{\mathrm{x}} \:\:\:=\:\:\mathrm{108}\:\:\:\:\:.....\:\left(\mathrm{ii}\right) \\ $$

Question Number 92010    Answers: 1   Comments: 0

if log_6 30 = a and log_(24) 15 = b log_(12) 60 = ?

$$\mathrm{if}\:\mathrm{log}_{\mathrm{6}} \mathrm{30}\:=\:{a}\:\mathrm{and}\:\mathrm{log}_{\mathrm{24}} \mathrm{15}\:=\:{b} \\ $$$$\mathrm{log}_{\mathrm{12}} \mathrm{60}\:=\:? \\ $$

Question Number 92008    Answers: 0   Comments: 1

Sum of infinite series: 1 + (3/4) + ((3.5)/(4.8)) + ((3.5.7)/(4.8.12)) + ... is ?

$$\mathrm{Sum}\:\mathrm{of}\:\mathrm{infinite}\:\mathrm{series}:\:\:\mathrm{1}\:\:+\:\:\frac{\mathrm{3}}{\mathrm{4}}\:\:+\:\:\frac{\mathrm{3}.\mathrm{5}}{\mathrm{4}.\mathrm{8}}\:\:+\:\:\frac{\mathrm{3}.\mathrm{5}.\mathrm{7}}{\mathrm{4}.\mathrm{8}.\mathrm{12}}\:\:+\:\:...\:\:\:\:\mathrm{is}\:? \\ $$

Question Number 92003    Answers: 0   Comments: 2

The sum to n terms of the series (3/1^2 ) + (5/(1^2 +2^2 )) + (7/(1^2 +2^2 +3^2 )) + .... is

$$\mathrm{The}\:\mathrm{sum}\:\mathrm{to}\:{n}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{series} \\ $$$$\frac{\mathrm{3}}{\mathrm{1}^{\mathrm{2}} }\:+\:\frac{\mathrm{5}}{\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }\:+\:\frac{\mathrm{7}}{\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }\:+\:....\:\mathrm{is} \\ $$

Question Number 91996    Answers: 0   Comments: 2

∫(arcsinx)^2 dx=?

$$\int\left(\mathrm{arcsinx}\right)^{\mathrm{2}} \mathrm{dx}=? \\ $$

Question Number 91995    Answers: 0   Comments: 1

hello what is the metric of schwarzchild dynamics.

$${hello}\:{what}\:{is}\:{the}\:{metric}\:{of}\:{schwarzchild}\:{dynamics}. \\ $$

Question Number 92025    Answers: 2   Comments: 1

∫(((x−1)/(x^2 −x−1)))dx

$$\int\left(\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}^{\mathrm{2}} −\mathrm{x}−\mathrm{1}}\right)\mathrm{dx} \\ $$

Question Number 91977    Answers: 4   Comments: 10

Question Number 91982    Answers: 0   Comments: 0

show that ∫_0 ^(π/2) csc(x) tan^(−1) (sin(x)) dx=(π/2)ln(1+(√2))

$${show}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {csc}\left({x}\right)\:{tan}^{−\mathrm{1}} \left({sin}\left({x}\right)\right)\:{dx}=\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$

Question Number 91990    Answers: 0   Comments: 2

Question Number 92000    Answers: 1   Comments: 0

proof 0!!=1

$$\mathrm{proof}\:\mathrm{0}!!=\mathrm{1} \\ $$

Question Number 91961    Answers: 0   Comments: 1

∫ cos^3 (2x) sin^3 (3x) dx

$$\int\:\mathrm{cos}\:^{\mathrm{3}} \left(\mathrm{2x}\right)\:\mathrm{sin}\:^{\mathrm{3}} \left(\mathrm{3x}\right)\:\mathrm{dx}\: \\ $$

Question Number 91960    Answers: 0   Comments: 3

If f(x) is an even function is Σ_(n=−∞) ^∞ f(n)=2Σ_(n=0) ^∞ f(n) true?

$$\mathrm{If} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{an}\:{e}\mathrm{ven}\:\mathrm{function}\:\mathrm{is} \\ $$$$\underset{{n}=−\infty} {\overset{\infty} {\sum}}{f}\left({n}\right)=\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{f}\left({n}\right)\:{true}? \\ $$

Question Number 91954    Answers: 0   Comments: 4

lim_(x→0^+ ) ((ln(sin 2x))/(ln(sin 4x)))

$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\mathrm{ln}\left(\mathrm{sin}\:\mathrm{2x}\right)}{\mathrm{ln}\left(\mathrm{sin}\:\mathrm{4x}\right)} \\ $$

Question Number 91948    Answers: 0   Comments: 1

Question Number 91946    Answers: 2   Comments: 3

a particle is projected from a point at a height 3h metres above a horizontal play ground. the direction of the projectile makes an angle α with the horizontal through the point of projection. show that if th greatest height reached above the point lc projection is h metres, then the horizontal distance travelled by the particle before striking the plane is 6h cotα metres. Find the vertical and horizontal component of the speed of the particle just before it hits the ground.

$$\mathrm{a}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{projected}\:\mathrm{from}\:\mathrm{a}\:\mathrm{point}\:\mathrm{at}\:\mathrm{a}\:\mathrm{height}\:\mathrm{3}{h}\:\mathrm{metres}\:\mathrm{above}\:\mathrm{a}\:\mathrm{horizontal} \\ $$$$\mathrm{play}\:\mathrm{ground}.\:\mathrm{the}\:\mathrm{direction}\:\mathrm{of}\:\mathrm{the}\:\mathrm{projectile}\:\mathrm{makes}\:\mathrm{an}\:\mathrm{angle}\:\alpha\:\mathrm{with}\:\mathrm{the} \\ $$$$\mathrm{horizontal}\:\mathrm{through}\:\mathrm{the}\:\mathrm{point}\:\mathrm{of}\:\mathrm{projection}.\:\:\mathrm{show}\:\mathrm{that}\:\mathrm{if}\:\mathrm{th}\:\mathrm{greatest} \\ $$$$\mathrm{height}\:\mathrm{reached}\:\mathrm{above}\:\mathrm{the}\:\mathrm{point}\:\mathrm{lc}\:\mathrm{projection}\:\mathrm{is}\:{h}\:\mathrm{metres},\:\mathrm{then}\:\mathrm{the}\:\mathrm{horizontal} \\ $$$$\mathrm{distance}\:\mathrm{travelled}\:\mathrm{by}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{before}\:\mathrm{striking}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{is}\:\mathrm{6}{h}\:\mathrm{cot}\alpha\:\mathrm{metres}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{vertical}\:\mathrm{and}\:\mathrm{horizontal}\:\mathrm{component}\:\mathrm{of}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{just} \\ $$$$\mathrm{before}\:\mathrm{it}\:\mathrm{hits}\:\mathrm{the}\:\mathrm{ground}. \\ $$

Question Number 91933    Answers: 1   Comments: 2

Question Number 91936    Answers: 0   Comments: 6

how to evaluate ln(i), i=(√(−1)).

$${how}\:{to}\:{evaluate}\:{ln}\left({i}\right),\:{i}=\sqrt{−\mathrm{1}}. \\ $$

Question Number 91931    Answers: 0   Comments: 3

∫_0 ^1 ln(Γ(x)) dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right)\:{dx} \\ $$

Question Number 91930    Answers: 0   Comments: 2

lim_(x→0) cos (1/x)=

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}cos}\:\frac{\mathrm{1}}{{x}}= \\ $$

Question Number 91919    Answers: 0   Comments: 1

The value of sin 12° sin 48° sin 54° is

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{sin}\:\mathrm{12}°\:\mathrm{sin}\:\mathrm{48}°\:\mathrm{sin}\:\mathrm{54}°\:\:\mathrm{is} \\ $$

Question Number 91914    Answers: 1   Comments: 0

hi every one here i will put my solution for old question by mr.MJS ∫((√((x−1)x(x+1)))/(3x^2 −4))dx the solution by using Appell hypergeometric function

$${hi}\:{every}\:{one}\:{here}\:{i}\:{will}\:{put}\:{my}\:{solution}\:\: \\ $$$${for}\:{old}\:{question}\:{by}\:{mr}.{MJS} \\ $$$$\int\frac{\sqrt{\left({x}−\mathrm{1}\right){x}\left({x}+\mathrm{1}\right)}}{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}}{dx} \\ $$$$ \\ $$$${the}\:{solution}\:{by}\:{using}\:\:\: \\ $$$${Appell}\:{hypergeometric}\:{function} \\ $$

Question Number 91912    Answers: 0   Comments: 2

if ∣x∣, ∣x−1∣, ∣x+1∣ are first three terms of an AP. then what is the sum of it′s first 10 terms equal to

$$\mathrm{if}\:\mid\mathrm{x}\mid,\:\mid\mathrm{x}−\mathrm{1}\mid,\:\mid\mathrm{x}+\mathrm{1}\mid\:\mathrm{are}\:\mathrm{first} \\ $$$$\mathrm{three}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{an}\:\mathrm{AP}.\:\mathrm{then}\: \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{it}'\mathrm{s}\:\mathrm{first} \\ $$$$\mathrm{10}\:\mathrm{terms}\:\mathrm{equal}\:\mathrm{to}\: \\ $$

Question Number 91911    Answers: 1   Comments: 0

y′′′′+2y′′+y=sin x

$$\mathrm{y}''''+\mathrm{2y}''+\mathrm{y}=\mathrm{sin}\:\mathrm{x}\: \\ $$

  Pg 1221      Pg 1222      Pg 1223      Pg 1224      Pg 1225      Pg 1226      Pg 1227      Pg 1228      Pg 1229      Pg 1230   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com