Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1226

Question Number 89973    Answers: 1   Comments: 1

x (dy/dx) −y = x^2 tan ((y/x))

$${x}\:\frac{{dy}}{{dx}}\:−{y}\:=\:{x}^{\mathrm{2}} \:\mathrm{tan}\:\left(\frac{{y}}{{x}}\right)\: \\ $$

Question Number 89970    Answers: 0   Comments: 1

xy (dy/dx) = y^2 ((x^3 /(x^2 +1)))

$$\mathrm{xy}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{y}^{\mathrm{2}} \left(\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\right)\: \\ $$

Question Number 89955    Answers: 1   Comments: 2

9^(x+1) ∤28(3^x )+3=0

$$\mathrm{9}^{\mathrm{x}+\mathrm{1}} \nmid\mathrm{28}\left(\mathrm{3}^{\mathrm{x}} \right)+\mathrm{3}=\mathrm{0} \\ $$

Question Number 89953    Answers: 0   Comments: 1

solvethefollowingequation 5^(2x+y) =625and2^(4x∤2y) =(1/6)

$$\mathrm{solvethefollowingequation} \\ $$$$\mathrm{5}^{\mathrm{2x}+\mathrm{y}} =\mathrm{625and2}^{\mathrm{4x}\nmid\mathrm{2y}} =\frac{\mathrm{1}}{\mathrm{6}} \\ $$

Question Number 89951    Answers: 0   Comments: 1

log _2 (sin (x+((5π)/(12)))) + log _2 (sin (x+(π/(12))))=−1

$$\mathrm{log}\:_{\mathrm{2}} \:\left(\mathrm{sin}\:\left({x}+\frac{\mathrm{5}\pi}{\mathrm{12}}\right)\right)\:+\:\mathrm{log}\:_{\mathrm{2}} \left(\mathrm{sin}\:\left({x}+\frac{\pi}{\mathrm{12}}\right)\right)=−\mathrm{1} \\ $$

Question Number 89950    Answers: 0   Comments: 1

Question Number 89946    Answers: 1   Comments: 0

∫ _(−(π/2)) ^(π/2) (dx/(1+e^(sin x) ))

$$\int\underset{−\frac{\pi}{\mathrm{2}}} {\overset{\frac{\pi}{\mathrm{2}}} {\:}}\:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{e}^{\mathrm{sin}\:\mathrm{x}} } \\ $$

Question Number 89958    Answers: 0   Comments: 1

prove that (1+sin x/1+cos 3(1sin x/1+cosec x)=tanx

$${prove}\:{that}\:\left(\mathrm{1}+\mathrm{sin}\:{x}/\mathrm{1}+\mathrm{cos}\:\mathrm{3}\left(\mathrm{1sin}\:{x}/\mathrm{1}+\mathrm{cosec}\:{x}\right)={tanx}\right. \\ $$

Question Number 89956    Answers: 0   Comments: 1

simplifyκgivingκyourκanswerκinκindexκform (√((ac^2 )/(9a^2 c^4 )))

$$\mathrm{simplify}\kappa\mathrm{giving}\kappa\mathrm{your}\kappa\mathrm{answer}\kappa\mathrm{in}\kappa\mathrm{index}\kappa\mathrm{form} \\ $$$$\sqrt{\frac{\mathrm{ac}^{\mathrm{2}} }{\mathrm{9a}^{\mathrm{2}} \mathrm{c}^{\mathrm{4}} }} \\ $$

Question Number 89938    Answers: 0   Comments: 1

If x(x+1) = 1 find (x+1)^3 −(1/((x+1)^3 ))

$$\mathrm{If}\:\mathrm{x}\left(\mathrm{x}+\mathrm{1}\right)\:=\:\mathrm{1}\: \\ $$$$\mathrm{find}\:\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} −\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$

Question Number 89937    Answers: 0   Comments: 1

Prove that for all complex such as ∣z∣<1= Σ_(n=1) ^∞ (z^n /((z^n −1)^2 )) +Σ_(n=1) ^∞ ((nz^n )/(z^n −1)) = 0

$${Prove}\:{that}\:{for}\:{all}\:{complex}\:{such}\:{as}\:\mid{z}\mid<\mathrm{1}= \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{z}^{{n}} }{\left({z}^{{n}} −\mathrm{1}\right)^{\mathrm{2}} }\:+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{nz}^{{n}} }{{z}^{{n}} −\mathrm{1}}\:=\:\mathrm{0}\: \\ $$

Question Number 89936    Answers: 1   Comments: 0

Prove that Σ_(p≥1,q≥1) (1/(pq(p+q−1))) =(π^2 /3)

$${Prove}\:{that}\:\underset{{p}\geqslant\mathrm{1},{q}\geqslant\mathrm{1}} {\sum}\:\:\frac{\mathrm{1}}{{pq}\left({p}+{q}−\mathrm{1}\right)}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{3}}\: \\ $$

Question Number 89934    Answers: 0   Comments: 0

Let x∈]0;1[ Prove that Σ_(n=1) ^∞ (x^n /(1+x^n )) +Σ_(n=1) ^∞ (((−x)^n )/(1−x^n )) = 0

$$\left.{Let}\:{x}\in\right]\mathrm{0};\mathrm{1}\left[\:\:{Prove}\:{that}\right. \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{\mathrm{1}+{x}^{{n}} }\:+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−{x}\right)^{{n}} }{\mathrm{1}−{x}^{{n}} }\:=\:\mathrm{0} \\ $$

Question Number 89928    Answers: 1   Comments: 0

Question Number 89925    Answers: 0   Comments: 0

x^2 (yy′′−y^2 )+xyy′ = y(√(x^2 (y′)^2 +y^2 ))

$${x}^{\mathrm{2}} \left({yy}''−{y}^{\mathrm{2}} \right)+{xyy}'\:=\:{y}\sqrt{{x}^{\mathrm{2}} \left({y}'\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }\: \\ $$

Question Number 89922    Answers: 0   Comments: 2

Question Number 89918    Answers: 0   Comments: 1

∫ ((x tan^(−1) (x))/((1+x^2 )^(3/2) )) dx

$$\int\:\frac{\mathrm{x}\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }\:\mathrm{dx}\: \\ $$

Question Number 89913    Answers: 1   Comments: 1

Question Number 89908    Answers: 0   Comments: 6

Solve the differential equstion: (d^2 y/dx^2 ) = ((y_0 − 2y_(−1) + y_(−2) )/h^2 )

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equstion}: \\ $$$$\:\:\:\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:\:\:=\:\:\:\frac{\mathrm{y}_{\mathrm{0}} \:\:−\:\:\mathrm{2y}_{−\mathrm{1}} \:\:+\:\:\mathrm{y}_{−\mathrm{2}} }{\mathrm{h}^{\mathrm{2}} } \\ $$

Question Number 89907    Answers: 1   Comments: 0

If the sum of 4 numbers is between 53 and 57 then the arithmetic mean of the numbers could be one of the following a)11.5 b)12 c)12.5 d)13 e)14

$${If}\:{the}\:{sum}\:{of}\:\mathrm{4}\:{numbers}\:{is}\:{between} \\ $$$$\mathrm{53}\:{and}\:\mathrm{57}\:{then}\:{the}\:{arithmetic}\:{mean}\:{of} \\ $$$${the}\:{numbers}\:{could}\:{be}\:{one}\:{of}\:{the} \\ $$$${following} \\ $$$$ \\ $$$$\left.{a}\left.\right)\left.\mathrm{1}\left.\mathrm{1}\left..\mathrm{5}\:{b}\right)\mathrm{12}\:{c}\right)\mathrm{12}.\mathrm{5}\:{d}\right)\mathrm{13}\:{e}\right)\mathrm{14} \\ $$

Question Number 89906    Answers: 1   Comments: 0

Show that 2x^7 −4x^4 +4x^2 =6x^6 +3 Has no solution in N

$${Show}\:{that}\: \\ $$$$\mathrm{2}{x}^{\mathrm{7}} −\mathrm{4}{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{2}} =\mathrm{6}{x}^{\mathrm{6}} +\mathrm{3} \\ $$$${Has}\:{no}\:{solution}\:{in}\:\mathbb{N} \\ $$

Question Number 89898    Answers: 0   Comments: 3

In a classroom when the students sit 2 per bench, 11 students are left with no sits. And when they sit 3 per bench 7 benches are left empty. Determine the number of students in this classroom.

$${In}\:{a}\:{classroom}\:{when}\:{the}\:{students}\:{sit} \\ $$$$\mathrm{2}\:{per}\:{bench},\:\mathrm{11}\:{students}\:{are}\:{left}\:{with} \\ $$$${no}\:{sits}.\:{And}\:{when}\:{they}\:{sit}\:\mathrm{3}\:{per}\:{bench} \\ $$$$\mathrm{7}\:{benches}\:{are}\:{left}\:{empty}.\:{Determine}\:{the}\:{number} \\ $$$${of}\:{students}\:{in}\:{this}\:{classroom}. \\ $$

Question Number 89896    Answers: 0   Comments: 4

Question Number 89891    Answers: 0   Comments: 1

calculate ∫_(1/e) ^1 ln(x)ln(1+x)dx

$${calculate}\:\int_{\frac{\mathrm{1}}{{e}}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}+{x}\right){dx} \\ $$

Question Number 89882    Answers: 2   Comments: 0

Question Number 89878    Answers: 1   Comments: 1

A four_digit whole number is interesting if the number formed by the leftmost two digits is twice as large as the number formed by the rightmost two digits. (for example 2010 is interesting) 1 find the largest whole number B such that all interesting numbers are divisible by B 2 find the smallest whole number D such that D is divisible by all interesting numbers.

$$\boldsymbol{{A}}\:\boldsymbol{{four\_digit}}\:\boldsymbol{{whole}}\:\boldsymbol{{number}} \\ $$$$\boldsymbol{{is}}\:\boldsymbol{{interesting}}\:\boldsymbol{{if}}\:\boldsymbol{{the}}\:\boldsymbol{{number}} \\ $$$$\boldsymbol{{formed}}\:\boldsymbol{{by}}\:\boldsymbol{{the}}\:\boldsymbol{{leftmost}}\:\boldsymbol{{two}} \\ $$$$\boldsymbol{{digits}}\:\boldsymbol{{is}}\:\boldsymbol{{twice}}\:\boldsymbol{{as}}\:\boldsymbol{{large}}\:\boldsymbol{{as}}\:\boldsymbol{{the}} \\ $$$$\boldsymbol{{number}}\:\boldsymbol{{formed}}\:\boldsymbol{{by}}\:\boldsymbol{{the}} \\ $$$$\boldsymbol{{rightmost}}\:\boldsymbol{{two}}\:\boldsymbol{{digits}}. \\ $$$$\left(\boldsymbol{{for}}\:\boldsymbol{{example}}\:\mathrm{2010}\:\boldsymbol{{is}}\:\boldsymbol{{interesting}}\right) \\ $$$$\mathrm{1}\:\:\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{largest}}\:\boldsymbol{{whole}}\:\boldsymbol{{number}} \\ $$$$\mathbb{B}\:\boldsymbol{{such}}\:\boldsymbol{{that}}\:\boldsymbol{{all}}\:\boldsymbol{{interesting}} \\ $$$$\boldsymbol{{numbers}}\:\boldsymbol{{are}}\:\boldsymbol{{divisible}}\:\boldsymbol{{by}}\:\mathbb{B} \\ $$$$\mathrm{2}\:\:\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{smallest}}\:\boldsymbol{{whole}} \\ $$$$\boldsymbol{{number}}\:\mathbb{D}\:\boldsymbol{{such}}\:\boldsymbol{{that}}\:\mathbb{D}\:\boldsymbol{{is}} \\ $$$$\boldsymbol{{divisible}}\:\boldsymbol{{by}}\:\boldsymbol{{all}}\:\boldsymbol{{interesting}} \\ $$$$\boldsymbol{{numbers}}. \\ $$

  Pg 1221      Pg 1222      Pg 1223      Pg 1224      Pg 1225      Pg 1226      Pg 1227      Pg 1228      Pg 1229      Pg 1230   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com