Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1226
Question Number 82485 Answers: 2 Comments: 4
Question Number 82476 Answers: 1 Comments: 0
$${solve}\:\:{xy}^{''} \:+\mathrm{2}{y}^{'} \:+{xy}=\mathrm{0}\:{with}\:{initial}\:{conditions} \\ $$$${y}\left({o}\right)=\mathrm{1}\:{and}\:{y}^{'} \left(\mathrm{1}\right)=\mathrm{0} \\ $$
Question Number 82474 Answers: 0 Comments: 2
$$\underset{−\mathrm{1}/\mathrm{2}} {\overset{\mathrm{1}/\mathrm{2}} {\int}}\:\mid\:{x}\:\mathrm{cos}\left(\frac{\pi{x}}{\mathrm{2}}\right)\mid\:{dx}\:= \\ $$
Question Number 82659 Answers: 1 Comments: 3
Question Number 82456 Answers: 0 Comments: 6
Question Number 82452 Answers: 0 Comments: 1
$${nature}\:{ofthe}\:{serie}\:\sum_{{n}=\mathrm{0}} ^{\infty} {ln}\left({cos}\left(\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\right)\right) \\ $$
Question Number 82450 Answers: 1 Comments: 1
$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{1}}{\mathrm{1}+\left({tan}\left({x}\right)\right)^{\sqrt{\mathrm{2}}} }\:{dx} \\ $$
Question Number 82448 Answers: 0 Comments: 2
$$\underset{\mathrm{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{Lim}}\:\left\{\frac{\mathrm{sin}\:\left(\mathrm{6x}−\mathrm{3}\pi\right)^{\mathrm{2}} −\mathrm{sin}\:\left(\mathrm{6x}−\mathrm{3}\pi\right)\mathrm{sin}\:\left(\mathrm{4x}−\mathrm{2}\pi\right)}{\mathrm{5x}^{\mathrm{2}} \:\mathrm{cos}\:\left(\mathrm{5x}−\frac{\mathrm{5}\pi}{\mathrm{2}}\:\right)}\right. \\ $$
Question Number 82447 Answers: 1 Comments: 0
$${calculate}\:\sum_{{n}=\mathrm{2}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\xi\left({n}\right) \\ $$
Question Number 82446 Answers: 0 Comments: 3
$${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\infty} {x}^{−{log}\left({x}\right)} \:{x}\:{log}\left({x}\right)\:{dx}={e}\sqrt{\pi} \\ $$
Question Number 82445 Answers: 1 Comments: 0
$${calculate}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{\xi\left({n}\right)−\mathrm{1}}{{n}} \\ $$$${with}\:\xi\left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\:\:\left({x}>\mathrm{1}\right) \\ $$
Question Number 82440 Answers: 0 Comments: 1
$${find}\:\int\:\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}{dx} \\ $$
Question Number 82439 Answers: 0 Comments: 1
$${calculate}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \sqrt{\mathrm{1}+{x}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 82442 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right){find}\:\int\:\frac{\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}}{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx} \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}}{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx} \\ $$
Question Number 82435 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{4}} ^{+\infty} \:\:\:\:\:\frac{{x}^{\mathrm{3}} }{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}−\mathrm{3}\right)^{\mathrm{5}} }{dx} \\ $$
Question Number 82434 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right){decompose}\:{inside}\:{C}\left({x}\right){and}\:{R}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)=\frac{\mathrm{2}{x}+\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} \left({x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{3}} ^{+\infty} {F}\left({x}\right){dx} \\ $$
Question Number 82433 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right){decompose}\:{inside}\:{C}\left({x}\right){and}\:{R}\left({x}\right)\:{F}=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 82431 Answers: 1 Comments: 5
Question Number 82426 Answers: 0 Comments: 2
$$\mathrm{Lim}\:\frac{\mathrm{e}^{\mathrm{x}} −\mathrm{1}−\mathrm{x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{2}} }\:=\:... \\ $$$$\mathrm{x}\rightarrow\mathrm{0} \\ $$
Question Number 82425 Answers: 0 Comments: 4
$$\mathrm{Lim}\:\left(\frac{\mathrm{1}}{\mathrm{ex}}\right)^{\mathrm{6x}} =..... \\ $$$$\mathrm{x}\rightarrow\mathrm{0} \\ $$
Question Number 82421 Answers: 1 Comments: 0
Question Number 82416 Answers: 0 Comments: 1
Question Number 82415 Answers: 0 Comments: 1
Question Number 82410 Answers: 1 Comments: 1
Question Number 82402 Answers: 0 Comments: 0
Question Number 82404 Answers: 1 Comments: 7
Pg 1221 Pg 1222 Pg 1223 Pg 1224 Pg 1225 Pg 1226 Pg 1227 Pg 1228 Pg 1229 Pg 1230
Terms of Service
Privacy Policy
Contact: info@tinkutara.com