Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1226

Question Number 91465    Answers: 1   Comments: 1

Question Number 91460    Answers: 1   Comments: 0

one of the conditions of the inflection point is inflection tangent. what is inflection tangent?

$${one}\:{of}\:{the}\:{conditions}\:{of}\:{the}\:{inflection} \\ $$$${point}\:{is}\:{inflection}\:{tangent}. \\ $$$${what}\:{is}\:{inflection}\:{tangent}? \\ $$

Question Number 91452    Answers: 2   Comments: 1

((−1))^(1/4) =?

$$\:\:\:\sqrt[{\mathrm{4}}]{−\mathrm{1}}\:=? \\ $$

Question Number 91448    Answers: 0   Comments: 3

prove that 1+x^(111) +x^(222) +x^(333) +x^(444) divides 1+ x^(111) +x^(222) +x^(333) +.......+x^(999)

$${prove}\:{that}\:\mathrm{1}+{x}^{\mathrm{111}} +{x}^{\mathrm{222}} +{x}^{\mathrm{333}} +{x}^{\mathrm{444}} \:\:{divides}\:\mathrm{1}+\:{x}^{\mathrm{111}} +{x}^{\mathrm{222}} +{x}^{\mathrm{333}} +.......+{x}^{\mathrm{999}} \\ $$

Question Number 91446    Answers: 0   Comments: 1

Question Number 91439    Answers: 1   Comments: 2

solve 2x^(99) +3x^(98) +2x^(97) +3x^(96) +.....2x+3=0 in R

$${solve}\:\mathrm{2}{x}^{\mathrm{99}} +\mathrm{3}{x}^{\mathrm{98}} +\mathrm{2}{x}^{\mathrm{97}} +\mathrm{3}{x}^{\mathrm{96}} +.....\mathrm{2}{x}+\mathrm{3}=\mathrm{0}\:{in}\:\mathbb{R} \\ $$

Question Number 91671    Answers: 0   Comments: 2

show that (x)^(1/(ln(x))) =e

$${show}\:{that} \\ $$$$\sqrt[{{ln}\left({x}\right)}]{{x}}={e} \\ $$

Question Number 91419    Answers: 0   Comments: 1

lim_(x→0) (1/(sin^4 x))(sin ((x/(1+x)))−((sin x)/(1+sin x)))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{4}} {x}}\left(\mathrm{sin}\:\left(\frac{{x}}{\mathrm{1}+{x}}\right)−\frac{\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{sin}\:{x}}\right) \\ $$

Question Number 91417    Answers: 0   Comments: 1

y′+2y=e^(−x)

$${y}'+\mathrm{2}{y}={e}^{−{x}} \\ $$

Question Number 91422    Answers: 0   Comments: 0

(dy/dx) = ((x^2 +y^2 )/(x^2 −y^2 ))

$$\frac{{dy}}{{dx}}\:=\:\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } \\ $$

Question Number 91399    Answers: 2   Comments: 13

Question Number 91395    Answers: 0   Comments: 0

∫_0 ^π ((∣x∣sin^2 x)/(1+2∣cos x∣sin x))dx

$$\int_{\mathrm{0}} ^{\pi} \frac{\mid{x}\mid\mathrm{sin}\:^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{2}\mid\mathrm{cos}\:{x}\mid\mathrm{sin}\:{x}}{dx} \\ $$

Question Number 91390    Answers: 1   Comments: 3

ABCDEF is a 6 digit number, ABC and DEF are 3 digit numbers. find ABCDEF satisfying: 1) ABCDEF=1×ABC×DEF 2) ABCDEF=2×ABC×DEF 3) ABCDEF=3×ABC×DEF 4) ABCDEF=4×ABC×DEF 5) ABCDEF=5×ABC×DEF 6) ABCDEF=6×ABC×DEF 7) ABCDEF=7×ABC×DEF 8) ABCDEF=8×ABC×DEF 9) ABCDEF=9×ABC×DEF

$${ABCDEF}\:{is}\:{a}\:\mathrm{6}\:{digit}\:{number}, \\ $$$${ABC}\:{and}\:{DEF}\:{are}\:\mathrm{3}\:{digit}\:{numbers}. \\ $$$${find}\:{ABCDEF}\:\:{satisfying}: \\ $$$$\left.\mathrm{1}\right)\:\:\:{ABCDEF}=\mathrm{1}×{ABC}×{DEF} \\ $$$$\left.\mathrm{2}\right)\:\:\:{ABCDEF}=\mathrm{2}×{ABC}×{DEF} \\ $$$$\left.\mathrm{3}\right)\:\:\:{ABCDEF}=\mathrm{3}×{ABC}×{DEF} \\ $$$$\left.\mathrm{4}\right)\:\:\:{ABCDEF}=\mathrm{4}×{ABC}×{DEF} \\ $$$$\left.\mathrm{5}\right)\:\:\:{ABCDEF}=\mathrm{5}×{ABC}×{DEF} \\ $$$$\left.\mathrm{6}\right)\:\:\:{ABCDEF}=\mathrm{6}×{ABC}×{DEF} \\ $$$$\left.\mathrm{7}\right)\:\:\:{ABCDEF}=\mathrm{7}×{ABC}×{DEF} \\ $$$$\left.\mathrm{8}\right)\:\:\:{ABCDEF}=\mathrm{8}×{ABC}×{DEF} \\ $$$$\left.\mathrm{9}\right)\:\:\:{ABCDEF}=\mathrm{9}×{ABC}×{DEF} \\ $$

Question Number 91421    Answers: 2   Comments: 2

∫_1 ^3 (1/(x(√(3x^2 +2x−1))))dx

$$\int_{\mathrm{1}} ^{\mathrm{3}} \frac{\mathrm{1}}{{x}\sqrt{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}}}{dx} \\ $$

Question Number 91384    Answers: 0   Comments: 4

particular integral y′′+3y′+2y = 4cos^2 x

$${particular}\:{integral}\: \\ $$$${y}''+\mathrm{3}{y}'+\mathrm{2}{y}\:=\:\mathrm{4cos}\:^{\mathrm{2}} {x} \\ $$

Question Number 91378    Answers: 1   Comments: 6

Question Number 91377    Answers: 0   Comments: 1

Question Number 91375    Answers: 0   Comments: 3

x4+2x3−5x2+6x+2/x2−2x+2^

$${x}\mathrm{4}+\mathrm{2}{x}\mathrm{3}−\mathrm{5}{x}\mathrm{2}+\mathrm{6}{x}+\mathrm{2}/{x}\mathrm{2}−\mathrm{2}{x}+\mathrm{2}^{} \\ $$

Question Number 91374    Answers: 0   Comments: 0

A car of mass 700 kg has maximum power P ,at all times, there is a non gravitational R to the motion of the car. the car moves along an inclined of angle θ where 10 sinθ = 1. The maximum speed of the car up the plane is is half the value of the speed down the plane. (a) find the value of R. on level road the car has speed of 20 ms^(−1) . (b) find the value of P.

$$\mathrm{A}\:\mathrm{car}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{700}\:\mathrm{kg}\:\mathrm{has}\:\mathrm{maximum}\:\mathrm{power}\:{P}\:\:,\mathrm{at}\:\mathrm{all}\:\mathrm{times}, \\ $$$$\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{non}\:\mathrm{gravitational}\:{R}\:\mathrm{to}\:\mathrm{the}\:\mathrm{motion}\:\mathrm{of}\:\mathrm{the}\:\mathrm{car}. \\ $$$$\mathrm{the}\:\mathrm{car}\:\mathrm{moves}\:\mathrm{along}\:\mathrm{an}\:\mathrm{inclined}\:\mathrm{of}\:\mathrm{angle}\:\theta\:\mathrm{where}\:\mathrm{10}\:\mathrm{sin}\theta\:=\:\mathrm{1}.\:\mathrm{The} \\ $$$$\mathrm{maximum}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{car}\:\mathrm{up}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{is}\:\mathrm{is}\:\mathrm{half}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{speed}\:\mathrm{down}\:\mathrm{the}\:\mathrm{plane}. \\ $$$$\left(\mathrm{a}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{R}. \\ $$$$\:\mathrm{on}\:\mathrm{level}\:\mathrm{road}\:\mathrm{the}\:\mathrm{car}\:\mathrm{has}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{20}\:\mathrm{ms}^{−\mathrm{1}} . \\ $$$$\left(\mathrm{b}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{P}. \\ $$

Question Number 91371    Answers: 0   Comments: 1

what is the particular integral (D^2 +D+1)y=e^x sin x

$${what}\:{is}\:{the}\:{particular}\: \\ $$$${integral}\:\left({D}^{\mathrm{2}} +{D}+\mathrm{1}\right){y}={e}^{{x}} \mathrm{sin}\:{x} \\ $$

Question Number 91362    Answers: 1   Comments: 3

Question Number 91354    Answers: 0   Comments: 3

ABCDEF = 3 × ABC × DEF ABCDEF is 6 digits number. ABC, DEF are 3 digits number . What is ABCDEF ?

$${ABCDEF}\:\:=\:\:\mathrm{3}\:×\:{ABC}\:×\:{DEF} \\ $$$${ABCDEF}\:\:{is}\:\:\mathrm{6}\:\:{digits}\:\:{number}. \\ $$$${ABC},\:{DEF}\:\:{are}\:\:\mathrm{3}\:\:{digits}\:\:{number}\:. \\ $$$${What}\:\:{is}\:\:{ABCDEF}\:\:? \\ $$

Question Number 91353    Answers: 1   Comments: 0

(dy/dx) = e^(3x−y^2 )

$$\frac{{dy}}{{dx}}\:=\:{e}^{\mathrm{3}{x}−{y}^{\mathrm{2}} } \: \\ $$

Question Number 91336    Answers: 0   Comments: 9

How many eleven digits palindrome numbers can be formed by 0, 2, 3, 4, and 8 ? Zero in the middle of order always .

$${How}\:\:{many}\:\:{eleven}\:\:{digits}\:\:{palindrome}\:\:{numbers}\:\:{can}\:\:{be} \\ $$$${formed}\:\:{by}\:\:\mathrm{0},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4},\:\:{and}\:\:\mathrm{8}\:? \\ $$$${Zero}\:\:{in}\:\:{the}\:{middle}\:\:{of}\:\:{order}\:\:{always}\:. \\ $$

Question Number 91329    Answers: 0   Comments: 3

Solve the differential equation: (d^2 y/dx^2 ) − x^2 (dy/dx)+xy = x

$$\:\mathrm{S}\boldsymbol{\mathrm{olve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}}: \\ $$$$\:\:\:\:\frac{\boldsymbol{\mathrm{d}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{dx}}^{\mathrm{2}} }\:−\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}+\boldsymbol{\mathrm{xy}}\:=\:\boldsymbol{\mathrm{x}} \\ $$

Question Number 91328    Answers: 0   Comments: 9

Find the sum (9/(1+(√2)))+((10−⌊(√2)⌋)/((√2)+(√3)))+((10−⌊(√3)⌋)/((√3)+(√4)))+...+((10−⌊(√(99))⌋)/((√(99))+(√(100)))) ⌊x⌋=the greatest integer function

$${Find}\:{the}\:{sum} \\ $$$$\frac{\mathrm{9}}{\mathrm{1}+\sqrt{\mathrm{2}}}+\frac{\mathrm{10}−\lfloor\sqrt{\mathrm{2}}\rfloor}{\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}}+\frac{\mathrm{10}−\lfloor\sqrt{\mathrm{3}}\rfloor}{\sqrt{\mathrm{3}}+\sqrt{\mathrm{4}}}+...+\frac{\mathrm{10}−\lfloor\sqrt{\mathrm{99}}\rfloor}{\sqrt{\mathrm{99}}+\sqrt{\mathrm{100}}} \\ $$$$\lfloor{x}\rfloor={the}\:{greatest}\:{integer}\:{function} \\ $$

  Pg 1221      Pg 1222      Pg 1223      Pg 1224      Pg 1225      Pg 1226      Pg 1227      Pg 1228      Pg 1229      Pg 1230   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com