Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1224

Question Number 86946    Answers: 0   Comments: 2

Question Number 86937    Answers: 0   Comments: 4

Question Number 86932    Answers: 1   Comments: 0

Question Number 86924    Answers: 1   Comments: 0

Question Number 86918    Answers: 0   Comments: 2

Question Number 86915    Answers: 0   Comments: 0

Question Number 86914    Answers: 0   Comments: 0

Question Number 86907    Answers: 1   Comments: 2

Question Number 86903    Answers: 0   Comments: 0

Question Number 86902    Answers: 0   Comments: 2

Mr.mathmax by abdo i request you to check my process to your question 86375.

$${Mr}.{mathmax}\:{by}\:{abdo} \\ $$$${i}\:{request}\:{you}\:{to}\:{check} \\ $$$${my}\:{process}\:{to}\:{your} \\ $$$${question}\:\mathrm{86375}. \\ $$

Question Number 86897    Answers: 1   Comments: 1

If ∫ (1/((x^2 +1)(x^2 +4))) dx = A tan^(−1) x+B tan^(−1) (x/2)+C, then

$$\mathrm{If}\:\int\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{4}\right)}\:{dx} \\ $$$$\:\:\:\:\:\:\:\:=\:\:{A}\:\mathrm{tan}^{−\mathrm{1}} {x}+{B}\:\mathrm{tan}^{−\mathrm{1}} \frac{{x}}{\mathrm{2}}+{C},\:\mathrm{then} \\ $$

Question Number 86895    Answers: 0   Comments: 0

A small mass rest on a horizontal plat form which vibrates vertically in simple harmonic motion with period 0.50s. Find the maximum amplitude of the motion which allow which allow the mass to remain in contact with the platform throughout the motion

$$\mathrm{A}\:\mathrm{small}\:\mathrm{mass}\:\mathrm{rest}\:\mathrm{on}\:\mathrm{a}\:\mathrm{horizontal}\:\mathrm{plat}\:\mathrm{form}\:\mathrm{which}\:\mathrm{vibrates}\: \\ $$$$\mathrm{vertically}\:\mathrm{in}\:\mathrm{simple}\:\mathrm{harmonic}\:\mathrm{motion}\:\mathrm{with}\:\mathrm{period}\:\mathrm{0}.\mathrm{50s}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{amplitude}\:\mathrm{of}\:\mathrm{the}\:\mathrm{motion}\:\mathrm{which}\:\mathrm{allow}\:\mathrm{which} \\ $$$$\mathrm{allow}\:\mathrm{the}\:\mathrm{mass}\:\mathrm{to}\:\mathrm{remain}\:\mathrm{in}\:\mathrm{contact}\:\mathrm{with}\:\mathrm{the}\:\mathrm{platform}\:\mathrm{throughout} \\ $$$$\mathrm{the}\:\mathrm{motion} \\ $$

Question Number 86894    Answers: 0   Comments: 2

let f(x)=((1−x^2 )/(⌈x−1⌉)) find the domain and f ′(−(1/2)) if exist. ⌈...⌉ ceiling function

$${let}\:{f}\left({x}\right)=\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\lceil{x}−\mathrm{1}\rceil} \\ $$$${find}\:{the}\:{domain}\:{and}\:{f}\:'\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\:{if}\:{exist}. \\ $$$$ \\ $$$$\lceil...\rceil\:{ceiling}\:{function} \\ $$

Question Number 86886    Answers: 0   Comments: 1

Question Number 86878    Answers: 2   Comments: 1

If sin^(10) (x) + cos^(10) (x) = ((11)/(36)) find sin^(12) (x) + cos ^(12) (x) = ?

$$\mathrm{If}\:\mathrm{sin}\:^{\mathrm{10}} \:\left(\mathrm{x}\right)\:+\:\mathrm{cos}\:^{\mathrm{10}} \:\left(\mathrm{x}\right)\:=\:\frac{\mathrm{11}}{\mathrm{36}} \\ $$$$\mathrm{find}\:\mathrm{sin}\:^{\mathrm{12}} \:\left(\mathrm{x}\right)\:+\:\mathrm{cos}\:\:^{\mathrm{12}} \left(\mathrm{x}\right)\:=\:? \\ $$

Question Number 86874    Answers: 0   Comments: 0

A businessman bought 300 company shares at K60.00. The nominal price was K30.00. How much does he pay for the shares?

$${A}\:{businessman}\:{bought}\:\mathrm{300}\:{company}\:{shares}\:{at}\:\boldsymbol{\mathrm{K}}\mathrm{60}.\mathrm{00}.\:{The}\:{nominal}\:{price}\:{was}\:\boldsymbol{\mathrm{K}}\mathrm{30}.\mathrm{00}.\:{How}\:{much}\:{does}\:{he}\:{pay}\:{for}\:{the}\:{shares}? \\ $$

Question Number 86873    Answers: 0   Comments: 0

A company paid a total dividend of K12 600.00 at the end of 2018 on 6000 shares. If Freddy owned 200 shares in the company, how much was paid out in dividents to him?

$${A}\:{company}\:{paid}\:{a}\:{total}\:{dividend}\:{of}\:\boldsymbol{\mathrm{K}}\mathrm{12}\:\mathrm{600}.\mathrm{00}\:{at}\:{the}\:{end}\:{of}\:\mathrm{2018}\:{on}\:\mathrm{6000}\:{shares}.\:{If}\:{Freddy}\:{owned}\:\mathrm{200}\:{shares}\:{in}\:{the}\:{company},\:{how}\:{much}\:{was}\:{paid}\:{out}\:{in}\:{dividents}\:{to}\:{him}? \\ $$

Question Number 86871    Answers: 2   Comments: 1

∫ (dx/((x^4 +1)^3 ))

$$\int\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{4}} +\mathrm{1}\right)^{\mathrm{3}} } \\ $$

Question Number 87017    Answers: 1   Comments: 0

$$ \\ $$

Question Number 86855    Answers: 1   Comments: 0

If a,b ,c are the roots of the equation x^3 +6x^2 −4x+3 = 0 . find the equation with roots a+b , b+c , a+c ?

$$\mathrm{If}\:\mathrm{a},\mathrm{b}\:,\mathrm{c}\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{x}^{\mathrm{3}} +\mathrm{6x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{3}\:=\:\mathrm{0}\:.\:\mathrm{find}\:\mathrm{the}\: \\ $$$$\mathrm{equation}\:\mathrm{with}\:\mathrm{roots}\:\mathrm{a}+\mathrm{b}\:,\:\mathrm{b}+\mathrm{c}\:,\:\mathrm{a}+\mathrm{c}\:? \\ $$

Question Number 86853    Answers: 1   Comments: 0

∫((x^6 −x^3 +2)/(x^4 −x^2 −2))dx

$$\int\frac{{x}^{\mathrm{6}} −{x}^{\mathrm{3}} +\mathrm{2}}{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} −\mathrm{2}}{dx} \\ $$

Question Number 86850    Answers: 1   Comments: 1

∫ (dx/(x^2 ((((x^4 +1)))^(1/(4 )) )^3 ))

$$\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:\left(\sqrt[{\mathrm{4}\:\:}]{\left(\mathrm{x}^{\mathrm{4}} +\mathrm{1}\right)}\right)^{\mathrm{3}} } \\ $$

Question Number 86849    Answers: 0   Comments: 0

If z,w ε C and ∣z∣>1, ∣w∣<1 so ∣((z−w)/(1−z^− w))∣>1, demostrate thr veracity of the statment. (V or F)

$${If}\:\:{z},{w}\:\epsilon\:\mathbb{C}\:{and}\:\mid{z}\mid>\mathrm{1},\:\mid{w}\mid<\mathrm{1} \\ $$$${so}\:\mid\frac{{z}−{w}}{\mathrm{1}−\overset{−} {{z}w}}\mid>\mathrm{1},\:{demostrate} \\ $$$${thr}\:{veracity}\:{of}\:{the} \\ $$$$\:{statment}.\:\left({V}\:{or}\:{F}\right) \\ $$

Question Number 86845    Answers: 0   Comments: 0

Question Number 86837    Answers: 1   Comments: 0

solve 1)(√(xy)) (dy/dx)=1 2)e^y sec(x)dx+cos(x)dy=0

$${solve} \\ $$$$\left.\mathrm{1}\right)\sqrt{{xy}}\:\frac{{dy}}{{dx}}=\mathrm{1} \\ $$$$\left.\mathrm{2}\right){e}^{{y}} \:{sec}\left({x}\right){dx}+{cos}\left({x}\right){dy}=\mathrm{0} \\ $$

Question Number 86830    Answers: 2   Comments: 0

Prove that ∫_0 ^∞ ((sin x)/x)dx = (π/2)

$${Prove}\:\:{that}\:\int_{\mathrm{0}} ^{\infty} \frac{{sin}\:{x}}{{x}}{dx}\:=\:\frac{\pi}{\mathrm{2}} \\ $$

  Pg 1219      Pg 1220      Pg 1221      Pg 1222      Pg 1223      Pg 1224      Pg 1225      Pg 1226      Pg 1227      Pg 1228   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com