Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1224

Question Number 93446    Answers: 0   Comments: 1

what is the coefficient of x^5 in the expansion (1+x^2 )(1+x)^4

$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{x}^{\mathrm{5}} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{4}} \\ $$

Question Number 93439    Answers: 2   Comments: 0

Question Number 93434    Answers: 1   Comments: 1

Question Number 93428    Answers: 1   Comments: 0

Question Number 93418    Answers: 0   Comments: 3

let A= (((1 2 3)),((3 2 1)) ) ∈M_3 (C) (1 4 2 ) 1) find A^(−1) if A inversible 2) calculate A^n 3)find cosA and sinA 4) is cos^2 A +sin^2 A =I ?

$${let}\:{A}=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\mathrm{3}}\\{\mathrm{3}\:\:\:\:\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix}\:\:\:\:\:\in{M}_{\mathrm{3}} \left({C}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{4}\:\:\:\:\:\:\:\mathrm{2}\:\right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:{A}^{−\mathrm{1}} \:{if}\:{A}\:{inversible} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{A}^{{n}} \\ $$$$\left.\mathrm{3}\right){find}\:{cosA}\:\:{and}\:{sinA} \\ $$$$\left.\mathrm{4}\right)\:{is}\:{cos}^{\mathrm{2}} \:{A}\:+{sin}^{\mathrm{2}} \:{A}\:={I}\:? \\ $$$$ \\ $$

Question Number 93415    Answers: 0   Comments: 5

let A = (((1 −1)),((1 1)) ) 1) calculate A^(−1) and A^(−2) 2) calculate A^n 3) find e^A and e^(−A)

$${let}\:\:{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:−\mathrm{1}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}^{−\mathrm{1}} \:{and}\:{A}^{−\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{A}^{{n}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{e}^{{A}} \:{and}\:{e}^{−{A}} \\ $$

Question Number 93414    Answers: 0   Comments: 0

let p(x)=((x^n (4−2x)^n )/(n!)) 1) prove that p^((k)) (0)=p^((k)) (2)=0 for all k∈[1,n−1] 2) prove that ∀m∈N p^((m)) (0) and p^((m)) (2) are integrs

$${let}\:{p}\left({x}\right)=\frac{{x}^{{n}} \left(\mathrm{4}−\mathrm{2}{x}\right)^{{n}} }{{n}!} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:{p}^{\left({k}\right)} \left(\mathrm{0}\right)={p}^{\left({k}\right)} \left(\mathrm{2}\right)=\mathrm{0}\:{for}\:{all}\:{k}\in\left[\mathrm{1},{n}−\mathrm{1}\right] \\ $$$$\left.\mathrm{2}\right)\:\:{prove}\:{that}\:\:\forall{m}\in{N}\:\:\:\:{p}^{\left({m}\right)} \left(\mathrm{0}\right)\:{and}\:{p}^{\left({m}\right)} \left(\mathrm{2}\right)\:{are}\:{integrs} \\ $$

Question Number 93410    Answers: 0   Comments: 7

∫((1+x^6 )/(1+x^8 ))dx

$$\int\frac{\mathrm{1}+{x}^{\mathrm{6}} }{\mathrm{1}+{x}^{\mathrm{8}} }{dx} \\ $$

Question Number 93397    Answers: 0   Comments: 2

prove that ((1−tan^3 θ)/(1 + tan^3 θ)) = 1−2sin^3 θ

$$\mathrm{prove}\:\mathrm{that}\:\frac{\mathrm{1}−\mathrm{tan}^{\mathrm{3}} \theta}{\mathrm{1}\:+\:\mathrm{tan}^{\mathrm{3}} \theta}\:=\:\mathrm{1}−\mathrm{2sin}^{\mathrm{3}} \theta\: \\ $$

Question Number 93388    Answers: 0   Comments: 2

Question Number 93376    Answers: 0   Comments: 1

x^x^x =((1/2))^(1/2) x=?

$$ \\ $$$${x}^{{x}^{{x}} } =\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${x}=? \\ $$

Question Number 93371    Answers: 0   Comments: 21

New version of the app with usability enhacements is now available on playstore. Pleasd update app. Comment on this post for problem/feedback suggestions.

$$\mathrm{New}\:\mathrm{version}\:\mathrm{of}\:\mathrm{the}\:\mathrm{app}\:\mathrm{with}\:\mathrm{usability} \\ $$$$\mathrm{enhacements}\:\mathrm{is}\:\mathrm{now}\:\mathrm{available}\:\mathrm{on} \\ $$$$\mathrm{playstore}. \\ $$$$\mathrm{Pleasd}\:\mathrm{update}\:\mathrm{app}.\: \\ $$$$\mathrm{Comment}\:\mathrm{on}\:\mathrm{this}\:\mathrm{post}\:\mathrm{for} \\ $$$$\mathrm{problem}/\mathrm{feedback}\:\mathrm{suggestions}. \\ $$

Question Number 93368    Answers: 1   Comments: 0

given that f(r)= sin (1 + 2r)θ show that f(r)−f(r−1) = 2 cos 2r θ sin θ hence show that Σ_(r=1) ^n cos 2r θ sin θ = cos (n +1)θ sin nθ

$$\mathrm{given}\:\mathrm{that}\:{f}\left({r}\right)=\:\:\mathrm{sin}\:\left(\mathrm{1}\:+\:\mathrm{2}{r}\right)\theta \\ $$$$\mathrm{show}\:\mathrm{that}\:{f}\left({r}\right)−{f}\left({r}−\mathrm{1}\right)\:=\:\mathrm{2}\:\mathrm{cos}\:\mathrm{2}{r}\:\theta\:\mathrm{sin}\:\theta \\ $$$$\mathrm{hence}\:\mathrm{show}\:\mathrm{that}\: \\ $$$$\:\:\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\:\mathrm{cos}\:\mathrm{2}{r}\:\theta\:\mathrm{sin}\:\theta\:\:=\:\mathrm{cos}\:\left({n}\:+\mathrm{1}\right)\theta\:\mathrm{sin}\:{n}\theta \\ $$

Question Number 93367    Answers: 0   Comments: 2

show using demoives theorem that sin^2 θ cos^2 4θ =(1/8)(1−cos4θ)

$$\mathrm{show}\:\mathrm{using}\:\mathrm{demoives}\:\mathrm{theorem}\:\mathrm{that}\: \\ $$$$\mathrm{sin}^{\mathrm{2}} \theta\:\mathrm{cos}^{\mathrm{2}} \mathrm{4}\theta\:=\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{1}−\mathrm{cos4}\theta\right) \\ $$

Question Number 93366    Answers: 1   Comments: 0

solve the equation (z−2)^3 = (1/2)−i((√3)/2)

$$\:\mathrm{solve}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\left({z}−\mathrm{2}\right)^{\mathrm{3}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}−{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$

Question Number 93365    Answers: 0   Comments: 3

given that α is a real number, use mathematical induction or otherwise to show that cos ((α/2))cos((α/2^2 ))cos((α/2^3 )) ...cos((α/2^n )) = ((sin α)/(2^n sin((α/2^n )))) hence find the lim_(n→∞) cos((α/2))cos((α/2^2 ))cos((α/2^3 )) ... cos((α/2^n ))

$$\mathrm{given}\:\mathrm{that}\:\alpha\:\mathrm{is}\:\mathrm{a}\:\mathrm{real}\:\mathrm{number},\:\mathrm{use}\:\mathrm{mathematical}\:\mathrm{induction}\:\mathrm{or} \\ $$$$\mathrm{otherwise}\:\mathrm{to}\:\mathrm{show}\:\mathrm{that}\: \\ $$$$\:\:\:\mathrm{cos}\:\left(\frac{\alpha}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{\alpha}{\mathrm{2}^{\mathrm{2}} }\right)\mathrm{cos}\left(\frac{\alpha}{\mathrm{2}^{\mathrm{3}} }\right)\:...\mathrm{cos}\left(\frac{\alpha}{\mathrm{2}^{{n}} }\right)\:=\:\frac{\mathrm{sin}\:\alpha}{\mathrm{2}^{{n}} \:\mathrm{sin}\left(\frac{\alpha}{\mathrm{2}^{{n}} }\right)} \\ $$$$\mathrm{hence}\:\mathrm{find}\:\mathrm{the}\: \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{cos}\left(\frac{\alpha}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{\alpha}{\mathrm{2}^{\mathrm{2}} }\right)\mathrm{cos}\left(\frac{\alpha}{\mathrm{2}^{\mathrm{3}} }\right)\:...\:\mathrm{cos}\left(\frac{\alpha}{\mathrm{2}^{{n}} }\right) \\ $$

Question Number 93350    Answers: 1   Comments: 0

f(x)=x^3 +2x Find: f^(−1) (x)

$${f}\left({x}\right)={x}^{\mathrm{3}} +\mathrm{2}{x} \\ $$$${Find}:\:{f}^{−\mathrm{1}} \left({x}\right) \\ $$

Question Number 93340    Answers: 1   Comments: 7

Σ_(k = 1) ^(2011) (1/(k(k+1)(k+2))) ?

$$\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{\mathrm{2011}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{k}\left(\mathrm{k}+\mathrm{1}\right)\left(\mathrm{k}+\mathrm{2}\right)}\:? \\ $$

Question Number 93331    Answers: 1   Comments: 2

If f(x+y) = f(x)+f(y) and f(1)=5 then what is the value of f(2020) ?

$$\mathrm{If}\:\mathrm{f}\left(\mathrm{x}+\mathrm{y}\right)\:=\:\mathrm{f}\left(\mathrm{x}\right)+\mathrm{f}\left(\mathrm{y}\right)\:\mathrm{and} \\ $$$$\mathrm{f}\left(\mathrm{1}\right)=\mathrm{5}\:\mathrm{then}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\mathrm{f}\left(\mathrm{2020}\right)\:?\: \\ $$

Question Number 93330    Answers: 1   Comments: 0

A committee of five is to be chosen from a group of 9 people. The probability that a certain married couple will either serve together or not at all is

$$\mathrm{A}\:\mathrm{committee}\:\mathrm{of}\:\mathrm{five}\:\mathrm{is}\:\mathrm{to}\:\mathrm{be}\:\mathrm{chosen}\:\mathrm{from} \\ $$$$\mathrm{a}\:\mathrm{group}\:\mathrm{of}\:\:\mathrm{9}\:\mathrm{people}.\:\mathrm{The}\:\mathrm{probability} \\ $$$$\mathrm{that}\:\mathrm{a}\:\mathrm{certain}\:\mathrm{married}\:\mathrm{couple}\:\mathrm{will}\:\mathrm{either} \\ $$$$\mathrm{serve}\:\mathrm{together}\:\mathrm{or}\:\mathrm{not}\:\mathrm{at}\:\mathrm{all}\:\mathrm{is} \\ $$

Question Number 93315    Answers: 0   Comments: 0

If n>=2 and n⊂N . prove (1/2^2 )+(1/3^2 )+...(1/n^2 )<=n(1−(1/2)(1+(1/n)))^(1/n)

$${If}\:\:{n}>=\mathrm{2}\:\:{and}\:{n}\subset\mathbb{N}\:. \\ $$$${prove}\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+...\frac{\mathrm{1}}{{n}^{\mathrm{2}} }<={n}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\right)^{\frac{\mathrm{1}}{{n}}} \\ $$

Question Number 93312    Answers: 1   Comments: 0

(y−xy^2 )dx+(x+x^2 y^2 )dy = 0

$$\left(\mathrm{y}−\mathrm{xy}^{\mathrm{2}} \right)\mathrm{dx}+\left(\mathrm{x}+\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \right)\mathrm{dy}\:=\:\mathrm{0}\: \\ $$

Question Number 93304    Answers: 5   Comments: 5

∫(√(tan (x)))dx Who can solve this problem?

$$\int\sqrt{\mathrm{tan}\:\left({x}\right)}{dx}\:{Who}\:{can}\:{solve}\:{this}\:{problem}? \\ $$

Question Number 93299    Answers: 0   Comments: 2

find a reduction formulae for I_n = ∫_(−1) ^0 x^n (1 + x)^2 dx

$$\mathrm{find}\:\mathrm{a}\:\mathrm{reduction}\:\mathrm{formulae}\:\mathrm{for}\:{I}_{{n}} \:=\:\int_{−\mathrm{1}} ^{\mathrm{0}} {x}^{{n}} \left(\mathrm{1}\:+\:{x}\right)^{\mathrm{2}} \:{dx} \\ $$

Question Number 93296    Answers: 1   Comments: 1

Question Number 93287    Answers: 0   Comments: 1

  Pg 1219      Pg 1220      Pg 1221      Pg 1222      Pg 1223      Pg 1224      Pg 1225      Pg 1226      Pg 1227      Pg 1228   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com