Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1223
Question Number 90379 Answers: 0 Comments: 2
Question Number 90440 Answers: 0 Comments: 3
Question Number 90362 Answers: 0 Comments: 7
Question Number 90360 Answers: 1 Comments: 1
Question Number 90359 Answers: 0 Comments: 1
$$\int\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \left({x}\right)} \\ $$
Question Number 90358 Answers: 0 Comments: 0
Question Number 90357 Answers: 0 Comments: 0
$$\int\:\frac{{x}.\mathrm{2}^{{x}} }{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{dx}\:=\:? \\ $$
Question Number 90356 Answers: 0 Comments: 0
Question Number 90350 Answers: 1 Comments: 0
$${n}^{\mathrm{2}} {x}−\mathrm{5}{a}^{\mathrm{2}} {y}^{\mathrm{2}} −{n}^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{5}{a}^{\mathrm{2}} {x} \\ $$
Question Number 90347 Answers: 2 Comments: 5
Question Number 90341 Answers: 0 Comments: 0
$${Express}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{36}\:\:{interm} \\ $$$${conjugate}\:{coordinate} \\ $$
Question Number 90331 Answers: 1 Comments: 1
Question Number 90330 Answers: 0 Comments: 1
Question Number 90327 Answers: 0 Comments: 1
Question Number 90326 Answers: 1 Comments: 1
Question Number 90321 Answers: 2 Comments: 2
$$\int\frac{\mathrm{1}}{{x}\sqrt[{\mathrm{3}}]{\mathrm{1}+{x}^{\mathrm{5}} }}{dx} \\ $$$$ \\ $$$$\int\frac{\mathrm{1}}{{sin}^{\mathrm{2}} \left({x}\right)+\mathrm{5}{sin}\left({x}\right)+\mathrm{6}}{dx} \\ $$$$ \\ $$$$\int\frac{\mathrm{2}{z}−\mathrm{5}}{\mathrm{4}{z}^{\mathrm{2}} +\mathrm{4}{z}+\mathrm{5}}{dz} \\ $$$$ \\ $$$$\int{sec}^{\mathrm{5}} \left(\mathrm{5}\theta\right)\:\sqrt{{tan}^{\mathrm{3}} \left(\mathrm{5}\theta\right)}\:{d}\theta \\ $$$$ \\ $$$$ \\ $$
Question Number 90318 Answers: 0 Comments: 0
$$\mathrm{Please}\:\mathrm{can}\:\mathrm{this}\:\mathrm{be}\:\mathrm{resolve}\:\mathrm{in}\:\mathrm{partial}\:\mathrm{fraction}? \\ $$$$\:\:\:\:\:\:\frac{\mathrm{sec}^{\mathrm{2}} \mathrm{x}\:\:−\:\:\frac{\mathrm{2}}{\mathrm{x}^{\mathrm{2}} }}{\left(\mathrm{tan}\:\mathrm{x}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{2}} } \\ $$
Question Number 90316 Answers: 1 Comments: 2
$$\begin{vmatrix}{{x}}&{\mathrm{7}}\\{\mathrm{9}}&{\mathrm{8}−{x}}\end{vmatrix}=\begin{vmatrix}{\mathrm{7}}&{\mathrm{0}}&{−\mathrm{3}}\\{−\mathrm{5}}&{{x}}&{−\mathrm{6}}\\{−\mathrm{3}}&{−\mathrm{5}}&{{x}−\mathrm{9}}\end{vmatrix} \\ $$$$ \\ $$
Question Number 90307 Answers: 1 Comments: 0
$$\:\:\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}}. \\ $$$$\:\:\:\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} \boldsymbol{\mathrm{D}}^{\mathrm{2}} −\mathrm{2}\right)\boldsymbol{\mathrm{y}}\:=\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:+\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}. \\ $$
Question Number 90306 Answers: 2 Comments: 2
$$\underset{\lambda\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{\lambda} ^{\mathrm{2}\lambda} \:\frac{{e}^{−{x}} }{{x}}{dx} \\ $$
Question Number 90308 Answers: 1 Comments: 1
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{x}}{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right){dx} \\ $$
Question Number 90301 Answers: 0 Comments: 1
$$\mathrm{Help}\:\mathrm{me} \\ $$$$ \\ $$$$\mathrm{z}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{y}.\mathrm{e}^{\frac{\mathrm{x}}{\mathrm{y}}} . \\ $$$$\mathrm{z}'_{\mathrm{x}} =...?\:\mathrm{and}\:\mathrm{z}'_{\mathrm{y}} =...? \\ $$
Question Number 90299 Answers: 0 Comments: 0
$$\mathrm{help}\:\mathrm{me} \\ $$$$ \\ $$$$\mathrm{z}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{xy}.\mathrm{ln}\:\mathrm{xy} \\ $$$$\mathrm{z}_{\mathrm{x}} ^{'} =...?\:\:\:\mathrm{and}\:\:\mathrm{z}'_{\mathrm{y}} =...? \\ $$
Question Number 90292 Answers: 0 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}−{e}^{{zx}^{\mathrm{2}} } }{{x}^{\mathrm{2}} }{dx}\:{with}\:{z}\:{from}\:{C}\:{and}\:{Re}\left({z}\right)<\mathrm{0} \\ $$
Question Number 90291 Answers: 0 Comments: 2
$${calculste}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}−{e}^{{zx}} }{{x}}{dx}\:\:{with}\:{z}\:{from}\:{C}\:{and}\:{Re}\left({z}\right)>\mathrm{0} \\ $$
Question Number 90287 Answers: 1 Comments: 0
$$\mathrm{f}\left(\mathrm{x}\right)\:=\:\begin{cases}{\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{6}\:,\:\mathrm{x}\geqslant\mathrm{1}}\\{\mathrm{x}^{\mathrm{4}} +\mathrm{2x}^{\mathrm{3}} +\mathrm{2}\:,\mathrm{x}<\mathrm{1}}\end{cases} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{number}\: \\ $$$$\mathrm{c}\:\in\:\left(−\mathrm{2},\mathrm{3}\right)\:\mathrm{such}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{c}\right)\:=\:\mathrm{4} \\ $$
Pg 1218 Pg 1219 Pg 1220 Pg 1221 Pg 1222 Pg 1223 Pg 1224 Pg 1225 Pg 1226 Pg 1227
Terms of Service
Privacy Policy
Contact: info@tinkutara.com