Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1222
Question Number 90434 Answers: 0 Comments: 3
$$\frac{\mathrm{log}_{\mathrm{2}} \left(\mathrm{8}{x}\right).\mathrm{log}_{\mathrm{3}} \left(\mathrm{27}{x}\right)}{{x}^{\mathrm{2}} −\mid{x}\mid}\:\leqslant\:\mathrm{0}\: \\ $$
Question Number 90424 Answers: 0 Comments: 1
$$\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:\underset{\frac{\mathrm{1}}{\mathrm{2}}{y}} {\overset{\mathrm{1}} {\int}}\:{e}^{−{x}^{\mathrm{2}} } \:{dxdy}\:=\:?\: \\ $$
Question Number 90417 Answers: 0 Comments: 6
$$\int\:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{12}} } \\ $$
Question Number 90407 Answers: 0 Comments: 0
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}^{{p}} }{{n}!}\:{in}\:{terms}\:{of}\:{p} \\ $$
Question Number 90406 Answers: 2 Comments: 0
$$\mathrm{If}\:\:\:\:\:\:\mathrm{x}\:\:−\:\:\frac{\mathrm{1}}{\mathrm{x}}\:\:\:=\:\:\:\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{4}} \:\:−\:\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{4}} }\:\:\:=\:\:\:??? \\ $$
Question Number 90402 Answers: 1 Comments: 0
Question Number 90432 Answers: 1 Comments: 1
$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\mathrm{x}\left[\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}−\mathrm{x}\:\right]\:=? \\ $$
Question Number 90394 Answers: 1 Comments: 2
$$\left(\mathrm{3x}^{\mathrm{2}} +\mathrm{9xy}+\mathrm{5y}^{\mathrm{2}} \right)\mathrm{dx}\:=\:\left(\mathrm{6x}^{\mathrm{2}} +\mathrm{4xy}\right)\mathrm{dy} \\ $$
Question Number 90383 Answers: 0 Comments: 1
$$\mathrm{find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\: \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{function}\:\mathrm{differentiable}\:\mathrm{at}\: \\ $$$$\mathrm{x}=\mathrm{1}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\begin{cases}{\mathrm{x}^{\mathrm{2}} ,\:\mathrm{x}\leqslant\mathrm{1}}\\{\mathrm{2ax}+\mathrm{b}\:,\:\mathrm{x}>\mathrm{1}}\end{cases} \\ $$
Question Number 90379 Answers: 0 Comments: 2
Question Number 90440 Answers: 0 Comments: 3
Question Number 90362 Answers: 0 Comments: 7
Question Number 90360 Answers: 1 Comments: 1
Question Number 90359 Answers: 0 Comments: 1
$$\int\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \left({x}\right)} \\ $$
Question Number 90358 Answers: 0 Comments: 0
Question Number 90357 Answers: 0 Comments: 0
$$\int\:\frac{{x}.\mathrm{2}^{{x}} }{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{dx}\:=\:? \\ $$
Question Number 90356 Answers: 0 Comments: 0
Question Number 90350 Answers: 1 Comments: 0
$${n}^{\mathrm{2}} {x}−\mathrm{5}{a}^{\mathrm{2}} {y}^{\mathrm{2}} −{n}^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{5}{a}^{\mathrm{2}} {x} \\ $$
Question Number 90347 Answers: 2 Comments: 5
Question Number 90341 Answers: 0 Comments: 0
$${Express}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{36}\:\:{interm} \\ $$$${conjugate}\:{coordinate} \\ $$
Question Number 90331 Answers: 1 Comments: 1
Question Number 90330 Answers: 0 Comments: 1
Question Number 90327 Answers: 0 Comments: 1
Question Number 90326 Answers: 1 Comments: 1
Question Number 90321 Answers: 2 Comments: 2
$$\int\frac{\mathrm{1}}{{x}\sqrt[{\mathrm{3}}]{\mathrm{1}+{x}^{\mathrm{5}} }}{dx} \\ $$$$ \\ $$$$\int\frac{\mathrm{1}}{{sin}^{\mathrm{2}} \left({x}\right)+\mathrm{5}{sin}\left({x}\right)+\mathrm{6}}{dx} \\ $$$$ \\ $$$$\int\frac{\mathrm{2}{z}−\mathrm{5}}{\mathrm{4}{z}^{\mathrm{2}} +\mathrm{4}{z}+\mathrm{5}}{dz} \\ $$$$ \\ $$$$\int{sec}^{\mathrm{5}} \left(\mathrm{5}\theta\right)\:\sqrt{{tan}^{\mathrm{3}} \left(\mathrm{5}\theta\right)}\:{d}\theta \\ $$$$ \\ $$$$ \\ $$
Question Number 90318 Answers: 0 Comments: 0
$$\mathrm{Please}\:\mathrm{can}\:\mathrm{this}\:\mathrm{be}\:\mathrm{resolve}\:\mathrm{in}\:\mathrm{partial}\:\mathrm{fraction}? \\ $$$$\:\:\:\:\:\:\frac{\mathrm{sec}^{\mathrm{2}} \mathrm{x}\:\:−\:\:\frac{\mathrm{2}}{\mathrm{x}^{\mathrm{2}} }}{\left(\mathrm{tan}\:\mathrm{x}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{2}} } \\ $$
Pg 1217 Pg 1218 Pg 1219 Pg 1220 Pg 1221 Pg 1222 Pg 1223 Pg 1224 Pg 1225 Pg 1226
Terms of Service
Privacy Policy
Contact: info@tinkutara.com