Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1222

Question Number 85776    Answers: 1   Comments: 0

Question Number 85775    Answers: 0   Comments: 0

Question Number 85774    Answers: 0   Comments: 0

(x_(2n) )=2^(2n) ((x/2))_n (((x+1)/2))_n (x)_(m n) =m^(m n) Π_(k=0) ^(m=1) (((x+k)/m))_n , m∈z now if m is relative number such as(3/2) , m∈Q (x)_((3/2)n) =?? help me

(x2n)=22n(x2)n(x+12)n(x)mn=mmnm=1k=0(x+km)n,mznowifmisrelativenumbersuchas32,mQ(x)32n=??helpme

Question Number 85766    Answers: 0   Comments: 2

(dy/dx) = 1−sin (x+2y)

dydx=1sin(x+2y)

Question Number 85762    Answers: 0   Comments: 12

Question Number 85760    Answers: 0   Comments: 0

∫(([cos^(−1) (x){(√(1−x^2 ))}]^(−1) )/(log{((sin(2x(√(1−x^2 ))))/π)})) dx

[cos1(x){1x2}]1log{sin(2x1x2)π}dx

Question Number 85756    Answers: 0   Comments: 5

Question Number 85739    Answers: 1   Comments: 0

If F (x)=∫_x^2 ^x^3 log t dt (x>0), then F ′(x)=

IfF(x)=x3x2logtdt(x>0),thenF(x)=

Question Number 85729    Answers: 0   Comments: 6

if march 24, 2020 is Tuesday, then march 24, 2032 is the day ?

ifmarch24,2020isTuesday,thenmarch24,2032istheday?

Question Number 85721    Answers: 1   Comments: 0

show that ∫_0 ^∞ ((e^(−x) ln(x))/(√x))dx=−(√π)(γ+ln(4))

showthat0exln(x)xdx=π(γ+ln(4))

Question Number 85718    Answers: 1   Comments: 0

∫((sin(x)−cos(3x))/(sin(x)−cos(2x)))dx

sin(x)cos(3x)sin(x)cos(2x)dx

Question Number 85717    Answers: 1   Comments: 0

∫_0 ^2 x^4 (√(1−x^2 )) dx ∫_0 ^1 x^(10) (1−x^n )dx

02x41x2dx01x10(1xn)dx

Question Number 85711    Answers: 0   Comments: 2

∫_(−4) ^2 ((2x + 1)/((x^2 + x + 1)^(3/2) )) dx

242x+1(x2+x+1)3/2dx

Question Number 85709    Answers: 1   Comments: 0

Question Number 85708    Answers: 1   Comments: 0

lim_(n−∞) /((U_n +1)/(Un))/ >0 Test for convergence

limn/Un+1Un/>0Testforconvergence

Question Number 85706    Answers: 1   Comments: 0

Find the general solution of x^2 (√(y^2 +9)) dx + 5 (√(x^2 −3)) y dy = 0

Findthegeneralsolutionofx2y2+9dx+5x23ydy=0

Question Number 85701    Answers: 1   Comments: 3

∫ ((√(3x−1))/(√(2x+1))) dx

3x12x+1dx

Question Number 85698    Answers: 0   Comments: 0

please any recommendation of a youtube video on General conics??

pleaseanyrecommendationofayoutubevideoonGeneralconics??

Question Number 85696    Answers: 0   Comments: 0

Montrer que: (√5)+(√(30))+(√(50))<(√(10))+(√(20))+(√(60)) {niveau second)

Montrerque:5+30+50<10+20+60{niveausecond)

Question Number 85695    Answers: 0   Comments: 0

Question Number 85694    Answers: 0   Comments: 1

log_(((x/(x−3)))) (7) < log_(((x/3))) (7)

log(xx3)(7)<log(x3)(7)

Question Number 85677    Answers: 2   Comments: 3

∫_0 ^π ((sin (((21x)/2)))/(sin ((x/2)))) dx

π0sin(21x2)sin(x2)dx

Question Number 85676    Answers: 0   Comments: 15

∫ _0 ^∞ (dx/((x+(√(1+x^2 )))^2 )) let x = tan t ⇒dx=sec^2 t dt ∫_0 ^(π/2) ((sec^2 t dt)/((tan t+sec t)^2 )) = ∫_0 ^(π/2) (dt/((sin t+1)^2 )) = ∫_0 ^(π/2) (dt/((cos (1/2)t+sin (1/2)t)^4 )) = ∫_0 ^(π/2) (dt/(4cos^4 ((1/2)t−(π/4)))) = (1/4)∫_0 ^(π/2) sec^4 ((1/2)t−(π/4)) dt [ let (1/2)t−(π/4)= u] = (1/4)∫_(−(π/4)) ^0 sec^4 u ×2du =(1/2)∫ _(−(π/4)) ^0 (tan^2 u+1) d(tan u) = (1/2) [(1/3)tan^3 u + tan u ]_(−(π/4)) ^0 = (1/2) [ 0−(−(1/3)−1)]= (2/3)

0dx(x+1+x2)2letx=tantdx=sec2tdtπ20sec2tdt(tant+sect)2=π20dt(sint+1)2=π20dt(cos12t+sin12t)4=π20dt4cos4(12tπ4)=14π20sec4(12tπ4)dt[let12tπ4=u]=140π4sec4u×2du=120π4(tan2u+1)d(tanu)=12[13tan3u+tanu]π40=12[0(131)]=23

Question Number 85670    Answers: 0   Comments: 3

Question Number 85669    Answers: 1   Comments: 4

∫ ((√(1+x))/(√(1−x))) dx

1+x1xdx

Question Number 85668    Answers: 0   Comments: 2

z = 2 + i find arg(z)

z=2+ifindarg(z)

  Pg 1217      Pg 1218      Pg 1219      Pg 1220      Pg 1221      Pg 1222      Pg 1223      Pg 1224      Pg 1225      Pg 1226   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com