Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1222
Question Number 92860 Answers: 0 Comments: 2
$$\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{x}\right)\:\mathrm{dy}\:+\:\mathrm{y}\:\mathrm{dx}\:=\:\mathrm{0}\: \\ $$
Question Number 92852 Answers: 3 Comments: 1
$$\mathrm{y}''+\mathrm{2y}'+\mathrm{y}\:=\:\mathrm{x}^{\mathrm{2}} \mathrm{e}^{−\mathrm{x}} \mathrm{cos}\:\mathrm{x} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{particular}\:\mathrm{solution} \\ $$$$ \\ $$
Question Number 92839 Answers: 1 Comments: 0
$$\mathrm{let}\:\mathrm{a}\:\mathrm{is}\:\mathrm{complex}\:\mathrm{number}\:\mathrm{such}\: \\ $$$$\mathrm{that}\:\mathrm{a}^{\mathrm{10}} \:+\:\mathrm{a}^{\mathrm{5}} \:+\mathrm{1}\:=\:\mathrm{0}. \\ $$$$\mathrm{find}\:\mathrm{a}^{\mathrm{2005}} \:+\:\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2005}} }\:? \\ $$
Question Number 92838 Answers: 0 Comments: 4
$$\left(\mathrm{x}+\mathrm{y}\right)\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{x}^{\mathrm{2}} +\mathrm{xy}+\mathrm{x}+\mathrm{1} \\ $$
Question Number 92835 Answers: 0 Comments: 3
Question Number 92831 Answers: 1 Comments: 5
Question Number 92820 Answers: 1 Comments: 0
$${a}\:{convergent}\:{geometric}\:{sequence}\:{with} \\ $$$${first}\:{term}\:{a}\:{is}\:{such}\:{that}\:{the}\:{sum}\:{of} \\ $$$${the}\:{terms}\:{after}\:{the}\:{n}^{{th}} \:{term}\:{is} \\ $$$${three}\:{times}\:{the}\:{n}^{{th}} \:{term},\:{find}\:{the} \\ $$$${common}\:{ratio}\:{and}\:{show}\:{that}\:{its}\: \\ $$$${sum}\:{to}\:{infinity}\:{is}\:\mathrm{4}{a}. \\ $$
Question Number 92808 Answers: 0 Comments: 0
$$\mathrm{Can}\:\mathrm{you}\:\mathrm{prove}\:{it}: \\ $$$${t}=\Phi \\ $$
Question Number 92807 Answers: 2 Comments: 1
Question Number 92804 Answers: 1 Comments: 12
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{following}\:\mathrm{differential}\:\mathrm{equations}: \\ $$$$\:\left(\mathrm{i}\right).\:\mathrm{e}^{\mathrm{x}−\mathrm{y}} \:\mathrm{dx}\:+\mathrm{e}^{\mathrm{y}−\mathrm{x}} \:\mathrm{dy}=\mathrm{0} \\ $$$$\:\:\left(\mathrm{ii}\right).\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\sqrt{\mathrm{y}−\mathrm{x}} \\ $$$$\:\left(\mathrm{iii}\right).\:\frac{\mathrm{dy}}{\mathrm{dx}}=\:\frac{\mathrm{3xy}+\mathrm{y}^{\mathrm{2}} }{\mathrm{3x}^{\mathrm{2}} } \\ $$$$ \\ $$
Question Number 92805 Answers: 1 Comments: 0
$$\:\mathrm{Evaluate}: \\ $$$$\:\int_{\boldsymbol{\mathrm{R}}} \int\:\frac{\boldsymbol{\mathrm{xy}}}{\sqrt{\mathrm{1}−\boldsymbol{\mathrm{y}}^{\mathrm{2}} }}\:\boldsymbol{\mathrm{dx}}\:\boldsymbol{\mathrm{dy}}\:\mathrm{where}\:\mathrm{the}\:\mathrm{region}\:\mathrm{of}\:\mathrm{integration}\:\mathrm{is}\:\mathrm{the} \\ $$$$\:\mathrm{positive}\:\mathrm{quadrant}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\mathrm{1}. \\ $$$$ \\ $$
Question Number 92801 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{Integrate}}\:\boldsymbol{\mathrm{following}}\:: \\ $$$$\:\:\left(\boldsymbol{\mathrm{i}}\right).\int\:\frac{\:\:\mathrm{dx}}{\mathrm{sin}\:\mathrm{x}\left(\:\mathrm{3}+\mathrm{2cos}\:\mathrm{x}\right)} \\ $$$$\:\:\left(\boldsymbol{\mathrm{ii}}\right).\int\sqrt{\frac{\mathrm{sin}\left(\mathrm{x}−\alpha\right)}{\mathrm{sin}\left(\mathrm{x}+\alpha\right)}}\:\:\mathrm{dx}\: \\ $$$$ \\ $$
Question Number 92799 Answers: 0 Comments: 2
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function}\:\mathrm{x}\rightarrow\mathrm{x}^{\mathrm{3}} \:\mathrm{is} \\ $$$$\mathrm{of}\:\mathrm{Riemann}\:\mathrm{within}\:\mathrm{the}\:\mathrm{interval}\:\left[−\mathrm{1},\mathrm{2}\right] \\ $$$$\mathrm{then}\:\mathrm{calculate}\:\int_{−\mathrm{1}} ^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} \mathrm{dx} \\ $$
Question Number 92798 Answers: 0 Comments: 0
$$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\boldsymbol{\theta}\:\mathrm{in}\:\mathrm{the}\:\mathrm{Mean}\:\mathrm{Value} \\ $$$$\:\:\mathrm{Theorem}\: \\ $$$$\:\:\mathrm{f}\left(\mathrm{x}+\mathrm{h}\right)\:=\:\mathrm{f}\left(\mathrm{x}\right)\:+\mathrm{h}\:\mathrm{f}^{\:'} \left(\mathrm{x}+\theta\mathrm{h}\right)\:\mathrm{if}\:\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\mathrm{1}}{\mathrm{x}}\:. \\ $$
Question Number 92795 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{Define}}\:\boldsymbol{\mathrm{Clairaut}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{equation}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{solve}} \\ $$$$\:\:\:\:\boldsymbol{\mathrm{y}}=\:\boldsymbol{\mathrm{px}}\:+\sqrt{\boldsymbol{\mathrm{a}}^{\mathrm{2}} \boldsymbol{\mathrm{p}}^{\mathrm{2}} +\boldsymbol{\mathrm{b}}^{\mathrm{2}} } \\ $$
Question Number 92790 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\pi}{\mathrm{4}}−{tan}^{−\mathrm{1}} \left({x}\right)\right)\frac{{dx}}{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$
Question Number 92788 Answers: 0 Comments: 0
Question Number 92785 Answers: 0 Comments: 2
$$\left.\mathrm{a}\left.\right)\:\mathrm{Find}\:\mathrm{E}\left(\mathrm{x}^{\mathrm{x}} \right)\:\mathrm{then}\:\mathrm{E}\left(\mathrm{x}^{\mathrm{x}^{\mathrm{x}} } \right)\:\mathrm{for}\:\mathrm{x}\in\right]\mathrm{0},\mathrm{1}\left[\right. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{find}\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{E}\left(\mathrm{x}^{\mathrm{x}^{\mathrm{x}} } \right) \\ $$
Question Number 92782 Answers: 0 Comments: 0
$$ \\ $$
Question Number 92781 Answers: 1 Comments: 1
$$\mathrm{tan}^{−\mathrm{1}} \left({x}\right)\:=\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\mathrm{1}}\right)\: \\ $$
Question Number 92778 Answers: 0 Comments: 1
Question Number 92772 Answers: 0 Comments: 1
Question Number 92771 Answers: 0 Comments: 0
Question Number 92769 Answers: 0 Comments: 0
$${calculate}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{C}_{{n}} ^{{k}} \:{cos}^{\mathrm{2}} \left(\frac{{k}\pi}{{n}}\right)\:\:\:\:\:\left({n}\geqslant\mathrm{2}\right) \\ $$
Question Number 92768 Answers: 0 Comments: 0
$${calculate}\:{A}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{cos}^{\mathrm{3}} \left({kx}\right)\:\:{and}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{sin}^{\mathrm{3}} \left({kx}\right) \\ $$
Question Number 92763 Answers: 0 Comments: 1
$${study}\:{the}\:{sequence}\:{u}_{{n}+\mathrm{1}} =\sqrt{{u}_{{n}} ^{\mathrm{2}} +\frac{\mathrm{1}}{{n}}} \\ $$$${and}\:{u}_{\mathrm{1}} =\mathrm{1} \\ $$
Pg 1217 Pg 1218 Pg 1219 Pg 1220 Pg 1221 Pg 1222 Pg 1223 Pg 1224 Pg 1225 Pg 1226
Terms of Service
Privacy Policy
Contact: info@tinkutara.com