Question and Answers Forum |
AllQuestion and Answers: Page 1222 |
![]() |
![]() |
(x_(2n) )=2^(2n) ((x/2))_n (((x+1)/2))_n (x)_(m n) =m^(m n) Π_(k=0) ^(m=1) (((x+k)/m))_n , m∈z now if m is relative number such as(3/2) , m∈Q (x)_((3/2)n) =?? help me |
(dy/dx) = 1−sin (x+2y) |
![]() |
∫(([cos^(−1) (x){(√(1−x^2 ))}]^(−1) )/(log{((sin(2x(√(1−x^2 ))))/π)})) dx |
![]() |
If F (x)=∫_x^2 ^x^3 log t dt (x>0), then F ′(x)= |
if march 24, 2020 is Tuesday, then march 24, 2032 is the day ? |
show that ∫_0 ^∞ ((e^(−x) ln(x))/(√x))dx=−(√π)(γ+ln(4)) |
∫((sin(x)−cos(3x))/(sin(x)−cos(2x)))dx |
∫_0 ^2 x^4 (√(1−x^2 )) dx ∫_0 ^1 x^(10) (1−x^n )dx |
∫_(−4) ^2 ((2x + 1)/((x^2 + x + 1)^(3/2) )) dx |
![]() |
lim_(n−∞) /((U_n +1)/(Un))/ >0 Test for convergence |
Find the general solution of x^2 (√(y^2 +9)) dx + 5 (√(x^2 −3)) y dy = 0 |
∫ ((√(3x−1))/(√(2x+1))) dx |
please any recommendation of a youtube video on General conics?? |
Montrer que: (√5)+(√(30))+(√(50))<(√(10))+(√(20))+(√(60)) {niveau second) |
![]() |
log_(((x/(x−3)))) (7) < log_(((x/3))) (7) |
∫_0 ^π ((sin (((21x)/2)))/(sin ((x/2)))) dx |
∫ _0 ^∞ (dx/((x+(√(1+x^2 )))^2 )) let x = tan t ⇒dx=sec^2 t dt ∫_0 ^(π/2) ((sec^2 t dt)/((tan t+sec t)^2 )) = ∫_0 ^(π/2) (dt/((sin t+1)^2 )) = ∫_0 ^(π/2) (dt/((cos (1/2)t+sin (1/2)t)^4 )) = ∫_0 ^(π/2) (dt/(4cos^4 ((1/2)t−(π/4)))) = (1/4)∫_0 ^(π/2) sec^4 ((1/2)t−(π/4)) dt [ let (1/2)t−(π/4)= u] = (1/4)∫_(−(π/4)) ^0 sec^4 u ×2du =(1/2)∫ _(−(π/4)) ^0 (tan^2 u+1) d(tan u) = (1/2) [(1/3)tan^3 u + tan u ]_(−(π/4)) ^0 = (1/2) [ 0−(−(1/3)−1)]= (2/3) |
![]() |
∫ ((√(1+x))/(√(1−x))) dx |
z = 2 + i find arg(z) |
Pg 1217 Pg 1218 Pg 1219 Pg 1220 Pg 1221 Pg 1222 Pg 1223 Pg 1224 Pg 1225 Pg 1226 |