Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1222

Question Number 93633    Answers: 0   Comments: 1

calvulate ∫_0 ^∞ ((cos(πx))/(1+x^4 ))dx

$${calvulate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\pi{x}\right)}{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$

Question Number 93632    Answers: 2   Comments: 1

calculate ∫_(−∞) ^(+∞) ((x^2 −3)/((x^2 −x+1)^2 ))dx

$${calculate}\:\int_{−\infty} ^{+\infty} \:\frac{{x}^{\mathrm{2}} −\mathrm{3}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 93626    Answers: 1   Comments: 9

Question Number 93638    Answers: 2   Comments: 2

∫ ((x^4 +4x^2 )/(√(x^2 +4))) dx ?

$$\int\:\frac{{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{2}} }{\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}}\:{dx}\:?\: \\ $$

Question Number 93623    Answers: 0   Comments: 2

Question Number 93620    Answers: 1   Comments: 0

(3x+3y−4) (dy/dx) = x+y

$$\left(\mathrm{3x}+\mathrm{3y}−\mathrm{4}\right)\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{x}+\mathrm{y}\: \\ $$

Question Number 93618    Answers: 0   Comments: 1

Question Number 93610    Answers: 1   Comments: 0

∫(((√(x^n +1))/x))dx

$$\int\left(\frac{\sqrt{\mathrm{x}^{\mathrm{n}} +\mathrm{1}}}{\mathrm{x}}\right)\mathrm{dx} \\ $$

Question Number 93587    Answers: 3   Comments: 0

∫((x+1)/(x^2 −((1+(√5))/2)x+1))dx

$$\int\frac{{x}+\mathrm{1}}{{x}^{\mathrm{2}} −\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}{x}+\mathrm{1}}{dx} \\ $$

Question Number 93705    Answers: 0   Comments: 3

find real q so that x^4 −40x^2 +q = 0 has four real solution forming AP.

$$\mathrm{find}\:\mathrm{real}\:\mathrm{q}\:\mathrm{so}\:\mathrm{that}\:\mathrm{x}^{\mathrm{4}} −\mathrm{40x}^{\mathrm{2}} +\mathrm{q}\:=\:\mathrm{0} \\ $$$$\mathrm{has}\:\mathrm{four}\:\mathrm{real}\:\mathrm{solution}\:\mathrm{forming} \\ $$$$\mathrm{AP}.\: \\ $$

Question Number 93571    Answers: 0   Comments: 1

Prove that ((1−tan^3 θ)/(1+tan^3 θ)) =1−2sin^2 θ

$${Prove}\:{that}\:\frac{\mathrm{1}−{tan}^{\mathrm{3}} \theta}{\mathrm{1}+{tan}^{\mathrm{3}} \theta}\:=\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \theta \\ $$

Question Number 93569    Answers: 0   Comments: 0

Question Number 93568    Answers: 0   Comments: 1

Question Number 93567    Answers: 1   Comments: 1

Given that A={0,1,3,5} B={1,2,4,7} and C={1,2,3,5,8} prove that (i) (A∩B)∩C = A∩(B∩C) (ii) (A∪B)∪C = A∪(B∪C) (iii) (A∪B)∩C = (A∪C)∪(B∩C) (iv) (A∩C)∪B = (A∪B)∩(C∪B)

$${Given}\:{that}\:{A}=\left\{\mathrm{0},\mathrm{1},\mathrm{3},\mathrm{5}\right\}\:{B}=\left\{\mathrm{1},\mathrm{2},\mathrm{4},\mathrm{7}\right\}\:{and}\:{C}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{5},\mathrm{8}\right\}\:{prove}\:{that} \\ $$$$\left(\mathrm{i}\right)\:\left(\mathrm{A}\cap\mathrm{B}\right)\cap\mathrm{C}\:=\:\mathrm{A}\cap\left(\mathrm{B}\cap\mathrm{C}\right) \\ $$$$\left(\mathrm{ii}\right)\:\left(\mathrm{A}\cup\mathrm{B}\right)\cup\mathrm{C}\:=\:\mathrm{A}\cup\left(\mathrm{B}\cup\mathrm{C}\right) \\ $$$$\left(\mathrm{iii}\right)\:\left(\mathrm{A}\cup\mathrm{B}\right)\cap\mathrm{C}\:=\:\left(\mathrm{A}\cup\mathrm{C}\right)\cup\left(\mathrm{B}\cap\mathrm{C}\right) \\ $$$$\left(\mathrm{iv}\right)\:\left(\mathrm{A}\cap\mathrm{C}\right)\cup\mathrm{B}\:=\:\left(\mathrm{A}\cup\mathrm{B}\right)\cap\left(\mathrm{C}\cup\mathrm{B}\right) \\ $$

Question Number 93555    Answers: 0   Comments: 3

Question Number 93553    Answers: 0   Comments: 2

∫ln(1+e^u )du

$$\int{ln}\left(\mathrm{1}+\mathrm{e}^{\mathrm{u}} \right)\mathrm{du} \\ $$

Question Number 93546    Answers: 0   Comments: 13

Which app is the best to evaluate ((W(2 ln 2))/(ln 2))

$$\:\:\mathrm{Which}\:\mathrm{app}\:\mathrm{is}\:\mathrm{the}\:\mathrm{best}\:\mathrm{to}\:\mathrm{evaluate} \\ $$$$\:\:\:\:\frac{\mathrm{W}\left(\mathrm{2}\:\mathrm{ln}\:\mathrm{2}\right)}{\mathrm{ln}\:\mathrm{2}} \\ $$

Question Number 93540    Answers: 0   Comments: 7

Question Number 93720    Answers: 0   Comments: 2

∫ (dx/((x+1)^3 (√(x^2 +2x))))

$$\int\:\frac{\boldsymbol{{dx}}}{\left(\boldsymbol{{x}}+\mathrm{1}\right)^{\mathrm{3}} \:\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{{x}}}}\: \\ $$

Question Number 93534    Answers: 1   Comments: 0

A^2 = ((7,3),(9,4) ) ⇒ A = ((a,b),(c,d) ) Find the all of different matrices A (i) . If a, b, c, d ∈ Z (ii) . If a, b, c, d ∈ R^+

$${A}^{\mathrm{2}} \:\:=\:\:\begin{pmatrix}{\mathrm{7}}&{\mathrm{3}}\\{\mathrm{9}}&{\mathrm{4}}\end{pmatrix}\:\:\:\Rightarrow\:\:{A}\:=\:\begin{pmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{pmatrix} \\ $$$${Find}\:\:{the}\:\:{all}\:\:{of}\:\:\:{different}\:\:{matrices}\:\:{A}\:\: \\ $$$$\left({i}\right)\:.\:{If}\:\:{a},\:{b},\:{c},\:{d}\:\in\:\mathbb{Z}\:\:\: \\ $$$$\left({ii}\right)\:.\:{If}\:\:{a},\:{b},\:{c},\:{d}\:\in\:\mathbb{R}^{+} \: \\ $$

Question Number 93530    Answers: 0   Comments: 4

(4x^2 +xy+y^2 )dx+(4y^2 +3xy+x^2 )dy=0

$$\left(\mathrm{4}{x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} \right){dx}+\left(\mathrm{4}{y}^{\mathrm{2}} +\mathrm{3}{xy}+{x}^{\mathrm{2}} \right){dy}=\mathrm{0} \\ $$

Question Number 93513    Answers: 1   Comments: 0

y^(′′) +y^′ −2y=0

$${y}^{''} +{y}^{'} −\mathrm{2}{y}=\mathrm{0} \\ $$

Question Number 93509    Answers: 0   Comments: 5

Σ_(n=1) ^∞ (1/(n^2 +5n+6))

$$\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{n}^{\mathrm{2}} +\mathrm{5}{n}+\mathrm{6}}\: \\ $$

Question Number 93505    Answers: 0   Comments: 0

Does (x,y)+(x^′ ,y^′ )=(x+x^′ , y+y^′ ) form a vector space? λ(x,y)=(λx,λy)

$$\mathrm{Does} \\ $$$$\left(\mathrm{x},\mathrm{y}\right)+\left(\mathrm{x}^{'} ,\mathrm{y}^{'} \right)=\left(\mathrm{x}+\mathrm{x}^{'} ,\:\mathrm{y}+\mathrm{y}^{'} \right) \\ $$$$\mathrm{form}\:\mathrm{a}\:\mathrm{vector}\:\mathrm{space}? \\ $$$$\lambda\left(\mathrm{x},\mathrm{y}\right)=\left(\lambda\mathrm{x},\lambda\mathrm{y}\right) \\ $$

Question Number 93512    Answers: 0   Comments: 2

(xy+sin y)dx+(0.5x^2 +xcos y)dy=o

$$\left({xy}+\mathrm{sin}\:{y}\right){dx}+\left(\mathrm{0}.\mathrm{5}{x}^{\mathrm{2}} +{x}\mathrm{cos}\:{y}\right){dy}={o} \\ $$

Question Number 93510    Answers: 0   Comments: 1

y^′ −y.tan x+y^2 cos x=0

$${y}^{'} −{y}.\mathrm{tan}\:{x}+{y}^{\mathrm{2}} \mathrm{cos}\:{x}=\mathrm{0} \\ $$

  Pg 1217      Pg 1218      Pg 1219      Pg 1220      Pg 1221      Pg 1222      Pg 1223      Pg 1224      Pg 1225      Pg 1226   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com