Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1213

Question Number 94356    Answers: 0   Comments: 2

∫_y ^3 (3x^2 −2x+2)=40 (1/2)y=?

$$\int_{{y}} ^{\mathrm{3}} \left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}\right)=\mathrm{40} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{y}=? \\ $$

Question Number 94354    Answers: 1   Comments: 3

by using ostrogadski method solve this integral ∫((3x^5 −x^4 +2x^3 −12x^2 −2x+1)/((x^3 −1)^2 ))dx

$${by}\:{using}\:{ostrogadski}\:{method}\:{solve}\:{this} \\ $$$${integral} \\ $$$$\int\frac{\mathrm{3}{x}^{\mathrm{5}} −{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{3}} −\mathrm{12}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}}{\left({x}^{\mathrm{3}} −\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 94352    Answers: 0   Comments: 4

Question Number 94344    Answers: 1   Comments: 0

if tan^(−1) (x)=(1/2)cos^(−1) ((5/(13))) find x

$$\mathrm{if}\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{5}}{\mathrm{13}}\right) \\ $$$$\mathrm{find}\:\mathrm{x}\: \\ $$

Question Number 94342    Answers: 0   Comments: 2

B

$$\mathbb{B} \\ $$

Question Number 94340    Answers: 1   Comments: 0

1) calculate U_n =∫_0 ^1 ln(x)ln(1−(x/n))dx (n>0) 2)find nature of Σ U_n and ΣnU_n

$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}−\frac{\mathrm{x}}{\mathrm{n}}\right)\mathrm{dx}\:\:\:\:\:\:\left(\mathrm{n}>\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{find}\:\mathrm{nature}\:\mathrm{of}\:\:\Sigma\:\mathrm{U}_{\mathrm{n}} \mathrm{and}\:\Sigma\mathrm{nU}_{\mathrm{n}} \\ $$

Question Number 94339    Answers: 0   Comments: 0

calculate Σ_(n=1) ^∞ H_n x^n with H_n =Σ_(k=1) ^n (1/k)

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{H}_{{n}} {x}^{{n}} \:\:\:{with}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$

Question Number 94338    Answers: 1   Comments: 0

developp at intergr serie f(x) =(1/((x+3)(x^2 +4)))

$${developp}\:{at}\:{intergr}\:{serie}\:{f}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}+\mathrm{3}\right)\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)} \\ $$

Question Number 94337    Answers: 3   Comments: 0

developp at integr serie f(x) =(1/((x−1)(x−2)))

$${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)} \\ $$

Question Number 94336    Answers: 2   Comments: 0

let f(x) =arctan(2x) e^(−3x) 1) determine f^((n)) (x) and f^((n)) (0) 2)developp f at integr serie

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{arctan}\left(\mathrm{2x}\right)\:\mathrm{e}^{−\mathrm{3x}} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{determine}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$

Question Number 94335    Answers: 2   Comments: 0

calculate Σ_(n=0) ^∞ n^((−1)^n ) x^n

$${calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{n}^{\left(−\mathrm{1}\right)^{{n}} } {x}^{{n}} \\ $$

Question Number 94334    Answers: 1   Comments: 0

let f(x) =((sinx)/x)if x≠0 and f(0)=1 1) findf^((n)) (x) and f^((n)) (0) 2)developp f at integr serie st x_0 =0 and x_0 =(π/2)

$${let}\:{f}\left({x}\right)\:=\frac{{sinx}}{{x}}{if}\:{x}\neq\mathrm{0}\:\:{and}\:{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{findf}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie}\:{st}\:{x}_{\mathrm{0}} =\mathrm{0}\:{and}\:{x}_{\mathrm{0}} =\frac{\pi}{\mathrm{2}} \\ $$

Question Number 94333    Answers: 1   Comments: 0

developp at integr serie ∫_(−∞) ^x (dt/(t^4 +t^2 +1))

$${developp}\:{at}\:{integr}\:{serie}\:\int_{−\infty} ^{{x}} \:\frac{{dt}}{{t}^{\mathrm{4}} \:+{t}^{\mathrm{2}} \:+\mathrm{1}} \\ $$

Question Number 94332    Answers: 0   Comments: 0

developp at integr serie f(x)=(arcsinx)^2

$${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)=\left({arcsinx}\right)^{\mathrm{2}} \\ $$

Question Number 94331    Answers: 2   Comments: 0

1) calculate Σ_(n=0) ^∞ (x^n /(4n^2 −1)) with ∣x∣<1 2) find the value of Σ_(n=0) ^∞ (1/(4n^2 −1)) and Σ_(n=0) ^∞ (((−1)^n )/(4n^2 −1))

$$\left.\mathrm{1}\right)\:{calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{{n}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}} \\ $$$$ \\ $$

Question Number 94328    Answers: 2   Comments: 0

y′ + xy = x

$$\mathrm{y}'\:+\:\mathrm{xy}\:=\:\mathrm{x}\: \\ $$

Question Number 94324    Answers: 0   Comments: 0

Question Number 94319    Answers: 0   Comments: 4

Question Number 94318    Answers: 0   Comments: 2

Given f(xy) = f(x+y) and f(7) = 7. find f(1008)

$$\mathrm{Given}\:\mathrm{f}\left(\mathrm{xy}\right)\:=\:\mathrm{f}\left(\mathrm{x}+\mathrm{y}\right)\:\mathrm{and}\: \\ $$$$\mathrm{f}\left(\mathrm{7}\right)\:=\:\mathrm{7}.\:\mathrm{find}\:\mathrm{f}\left(\mathrm{1008}\right)\: \\ $$

Question Number 94341    Answers: 0   Comments: 0

Question Number 94314    Answers: 0   Comments: 0

Question Number 94313    Answers: 0   Comments: 0

Question Number 94312    Answers: 0   Comments: 3

∫_0 ^a ((a^2 −x^2 )/((a^2 +x^2 )^2 )) dx ?

$$\underset{\mathrm{0}} {\overset{{a}} {\int}}\:\frac{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }{\left({a}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:? \\ $$

Question Number 94311    Answers: 0   Comments: 0

explicit f(a) =∫_0 ^1 ((ln(1−ax^2 ))/x^2 )dx with 0<a<1

$${explicit}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{ax}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx}\:{with}\:\mathrm{0}<{a}<\mathrm{1} \\ $$

Question Number 94310    Answers: 2   Comments: 0

calculate ∫_0 ^1 ((ln(1−x^2 ))/x^2 )dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx} \\ $$$$ \\ $$

Question Number 94309    Answers: 0   Comments: 0

  Pg 1208      Pg 1209      Pg 1210      Pg 1211      Pg 1212      Pg 1213      Pg 1214      Pg 1215      Pg 1216      Pg 1217   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com