Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1213

Question Number 93847    Answers: 0   Comments: 2

log _5 (x−2)+log _8 (x−4)= log _6 (x−1)

$$\mathrm{log}\:_{\mathrm{5}} \:\left(\mathrm{x}−\mathrm{2}\right)+\mathrm{log}\:_{\mathrm{8}} \:\left(\mathrm{x}−\mathrm{4}\right)=\:\mathrm{log}\:_{\mathrm{6}} \left(\mathrm{x}−\mathrm{1}\right) \\ $$

Question Number 93844    Answers: 1   Comments: 0

let f(x)=(√x) and g(x)=(√x) find the domain of (f.g)(x) ? help me sir

$${let}\:{f}\left({x}\right)=\sqrt{{x}}\:\:{and}\:{g}\left({x}\right)=\sqrt{{x}}\:{find}\:{the}\:{domain}\:{of}\:\left({f}.{g}\right)\left({x}\right)\:? \\ $$$${help}\:{me}\:{sir} \\ $$

Question Number 93843    Answers: 1   Comments: 0

Use Horner to solve it . (a^2 −5ab−3b^2 ) : (a−b) find the remainder .

$${Use}\:\:{Horner}\:\:{to}\:\:{solve}\:{it}\:. \\ $$$$\:\:\left({a}^{\mathrm{2}} −\mathrm{5}{ab}−\mathrm{3}{b}^{\mathrm{2}} \right)\::\:\left({a}−{b}\right) \\ $$$${find}\:\:{the}\:\:{remainder}\:\:. \\ $$

Question Number 93837    Answers: 0   Comments: 5

Question Number 93836    Answers: 0   Comments: 0

If cosα+cosβ+cosγ=0 = sinα+sinβ+sinγ, prove that (i) cos3α+cos3β+cosγ = 3cos(a+β+γ) (ii) sin3α+sin3β+sinγ = 3sin(α+β+γ) (iii) cos2α+cos2β+cos2γ = 0 (iv) sin2α+sin2β+sin2γ = 0 (Hints: Take a=cis α, b=cis β, c=cis γ, a+b+c=0 ⇒ a^3 +b^3 +c^3 =3abc (1/a)+(1/b)+(1/c)=0 ⇒ a^2 +b^2 +c^2 =0) (v) cos^2 α+cos^2 β+cosγ = sin^2 α+sin^2 β+sin^2 γ = (3/2).

$${If}\:{cos}\alpha+{cos}\beta+{cos}\gamma=\mathrm{0}\:=\:{sin}\alpha+{sin}\beta+{sin}\gamma,\:{prove}\:{that} \\ $$$$\left(\mathrm{i}\right)\:{cos}\mathrm{3}\alpha+{cos}\mathrm{3}\beta+{cos}\gamma\:=\:\mathrm{3}{cos}\left({a}+\beta+\gamma\right) \\ $$$$\left(\mathrm{ii}\right)\:{sin}\mathrm{3}\alpha+{sin}\mathrm{3}\beta+{sin}\gamma\:=\:\mathrm{3}{sin}\left(\alpha+\beta+\gamma\right) \\ $$$$\left(\mathrm{iii}\right)\:{cos}\mathrm{2}\alpha+{cos}\mathrm{2}\beta+{cos}\mathrm{2}\gamma\:=\:\mathrm{0} \\ $$$$\left(\mathrm{iv}\right)\:{sin}\mathrm{2}\alpha+{sin}\mathrm{2}\beta+{sin}\mathrm{2}\gamma\:=\:\mathrm{0} \\ $$$$\left(\mathrm{Hints}:\:\mathrm{T}{ake}\:{a}=\mathrm{cis}\:\alpha,\:\mathrm{b}=\mathrm{cis}\:\beta,\:\mathrm{c}=\mathrm{cis}\:\gamma,\:\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{0}\:\Rightarrow\:\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} =\mathrm{3abc}\right. \\ $$$$\left.\frac{\mathrm{1}}{\mathrm{a}}+\frac{\mathrm{1}}{\mathrm{b}}+\frac{\mathrm{1}}{\mathrm{c}}=\mathrm{0}\:\Rightarrow\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} =\mathrm{0}\right) \\ $$$$\left(\mathrm{v}\right)\:{cos}^{\mathrm{2}} \alpha+{cos}^{\mathrm{2}} \beta+{cos}\gamma\:=\:{sin}^{\mathrm{2}} \alpha+{sin}^{\mathrm{2}} \beta+{sin}^{\mathrm{2}} \gamma\:=\:\frac{\mathrm{3}}{\mathrm{2}}. \\ $$

Question Number 93828    Answers: 1   Comments: 2

sin x ((dy/dx))−y = 2sin x

$$\mathrm{sin}\:\mathrm{x}\:\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)−\mathrm{y}\:=\:\mathrm{2sin}\:\mathrm{x}\: \\ $$

Question Number 93827    Answers: 0   Comments: 1

simplify: (((cosα+isinα)^3 )/((sinβ+icosβ)^4 ))

$${simplify}:\:\frac{\left({cos}\alpha+\boldsymbol{\mathrm{i}}{sin}\alpha\right)^{\mathrm{3}} }{\left({sin}\beta+\boldsymbol{\mathrm{i}}{cos}\beta\right)^{\mathrm{4}} } \\ $$

Question Number 93824    Answers: 1   Comments: 0

Question Number 93820    Answers: 1   Comments: 1

∫ ((x^2 dx)/(√(x^2 −x+1)))

$$\int\:\frac{{x}^{\mathrm{2}} \:{dx}}{\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}}\: \\ $$

Question Number 93818    Answers: 1   Comments: 0

(y−xy^2 )dx +(x+x^2 y^2 )dy = 0

$$\left(\mathrm{y}−\mathrm{xy}^{\mathrm{2}} \right)\mathrm{dx}\:+\left(\mathrm{x}+\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \right)\mathrm{dy}\:=\:\mathrm{0} \\ $$

Question Number 93815    Answers: 1   Comments: 0

(D^2 +6D+9)y = (e^(−3x) /x^3 )

$$\left(\mathrm{D}^{\mathrm{2}} +\mathrm{6D}+\mathrm{9}\right)\mathrm{y}\:=\:\frac{\mathrm{e}^{−\mathrm{3x}} }{\mathrm{x}^{\mathrm{3}} }\: \\ $$

Question Number 93821    Answers: 1   Comments: 3

lim_(x→+∞) ln(e^x +1)−x =

$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\:\mathrm{ln}\left(\mathrm{e}^{{x}} +\mathrm{1}\right)−{x}\:=\: \\ $$

Question Number 93804    Answers: 1   Comments: 3

∫ x (((3x−1)/(x+2)))^(1/(3 )) dx ?

$$\int\:{x}\:\sqrt[{\mathrm{3}\:\:}]{\frac{\mathrm{3}{x}−\mathrm{1}}{{x}+\mathrm{2}}}\:{dx}\:?\: \\ $$

Question Number 93791    Answers: 0   Comments: 1

Question Number 94574    Answers: 1   Comments: 1

∫((√(cosx))/((√(sinx )) +(√(cosx))))dx=?

$$\int\frac{\sqrt{\mathrm{cosx}}}{\sqrt{\mathrm{sinx}\:}\:+\sqrt{\mathrm{cosx}}}\mathrm{dx}=? \\ $$

Question Number 93787    Answers: 0   Comments: 4

Question Number 93786    Answers: 3   Comments: 0

find f(x) such that f ′(x)=f^(−1) (x)

$${find}\:{f}\left({x}\right)\:{such}\:{that} \\ $$$${f}\:'\left({x}\right)={f}^{−\mathrm{1}} \left({x}\right) \\ $$

Question Number 93782    Answers: 0   Comments: 0

find (a/b) a=Σ_(k=1) ^∞ (1/(√(2k))) b=Σ_(k=0) ^∞ (1/(√(2k+1)))

$${find}\:\frac{{a}}{{b}} \\ $$$${a}=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\sqrt{\mathrm{2}{k}}} \\ $$$${b}=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\sqrt{\mathrm{2}{k}+\mathrm{1}}} \\ $$$$ \\ $$

Question Number 93764    Answers: 0   Comments: 3

define Σ_(x=0) ^k ((n!)/(x!(n−x)!)) without Σ symbol

$$\mathrm{define} \\ $$$$\underset{{x}=\mathrm{0}} {\overset{{k}} {\sum}}\frac{{n}!}{{x}!\left({n}−{x}\right)!} \\ $$$$\mathrm{without}\:\Sigma\:\mathrm{symbol} \\ $$

Question Number 93762    Answers: 1   Comments: 0

Question Number 93742    Answers: 0   Comments: 5

No my post option again?? at Tinkutara. because i cannot find my post options again

$$\mathrm{No}\:\mathrm{my}\:\mathrm{post}\:\mathrm{option}\:\mathrm{again}?? \\ $$$$\mathrm{at}\:\mathrm{Tinkutara}. \\ $$$$\mathrm{because}\:\mathrm{i}\:\mathrm{cannot}\:\mathrm{find}\:\mathrm{my}\:\mathrm{post}\:\mathrm{options}\:\mathrm{again} \\ $$

Question Number 93732    Answers: 0   Comments: 1

Find the n-th derivative of f(x)=sin(x)lnx

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{n}-\mathrm{th}\:\mathrm{derivative}\:\mathrm{of} \\ $$$$\mathrm{f}\left({x}\right)=\mathrm{sin}\left({x}\right){l}\mathrm{n}{x} \\ $$

Question Number 93733    Answers: 4   Comments: 10

Question Number 93730    Answers: 0   Comments: 3

what are the reasons for not using x = ((2c)/(−b ±(√(b^2 −4ac)))) as the quadratic formula? i proved it.

$$\mathrm{what}\:\mathrm{are}\:\mathrm{the}\:\mathrm{reasons}\:\mathrm{for}\:\mathrm{not}\:\mathrm{using}\: \\ $$$$\:{x}\:=\:\frac{\mathrm{2}{c}}{−{b}\:\pm\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}\:\:\mathrm{as}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{formula}?\: \\ $$$$\mathrm{i}\:\mathrm{proved}\:\mathrm{it}. \\ $$

Question Number 93727    Answers: 0   Comments: 4

what is saw function?

$${what}\:{is}\:{saw}\:{function}? \\ $$

Question Number 93726    Answers: 0   Comments: 1

find the value in sexagesimal numeral system 3° × 15°=? 3 × 15°=?

$${find}\:{the}\:{value}\:{in}\:{sexagesimal}\:{numeral} \\ $$$${system} \\ $$$$\mathrm{3}°\:×\:\mathrm{15}°=? \\ $$$$\mathrm{3}\:×\:\mathrm{15}°=? \\ $$

  Pg 1208      Pg 1209      Pg 1210      Pg 1211      Pg 1212      Pg 1213      Pg 1214      Pg 1215      Pg 1216      Pg 1217   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com