Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1213
Question Number 94356 Answers: 0 Comments: 2
$$\int_{{y}} ^{\mathrm{3}} \left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}\right)=\mathrm{40} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{y}=? \\ $$
Question Number 94354 Answers: 1 Comments: 3
$${by}\:{using}\:{ostrogadski}\:{method}\:{solve}\:{this} \\ $$$${integral} \\ $$$$\int\frac{\mathrm{3}{x}^{\mathrm{5}} −{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{3}} −\mathrm{12}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}}{\left({x}^{\mathrm{3}} −\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 94352 Answers: 0 Comments: 4
Question Number 94344 Answers: 1 Comments: 0
$$\mathrm{if}\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{5}}{\mathrm{13}}\right) \\ $$$$\mathrm{find}\:\mathrm{x}\: \\ $$
Question Number 94342 Answers: 0 Comments: 2
$$\mathbb{B} \\ $$
Question Number 94340 Answers: 1 Comments: 0
$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}−\frac{\mathrm{x}}{\mathrm{n}}\right)\mathrm{dx}\:\:\:\:\:\:\left(\mathrm{n}>\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{find}\:\mathrm{nature}\:\mathrm{of}\:\:\Sigma\:\mathrm{U}_{\mathrm{n}} \mathrm{and}\:\Sigma\mathrm{nU}_{\mathrm{n}} \\ $$
Question Number 94339 Answers: 0 Comments: 0
$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{H}_{{n}} {x}^{{n}} \:\:\:{with}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$
Question Number 94338 Answers: 1 Comments: 0
$${developp}\:{at}\:{intergr}\:{serie}\:{f}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}+\mathrm{3}\right)\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)} \\ $$
Question Number 94337 Answers: 3 Comments: 0
$${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)} \\ $$
Question Number 94336 Answers: 2 Comments: 0
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{arctan}\left(\mathrm{2x}\right)\:\mathrm{e}^{−\mathrm{3x}} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{determine}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$
Question Number 94335 Answers: 2 Comments: 0
$${calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{n}^{\left(−\mathrm{1}\right)^{{n}} } {x}^{{n}} \\ $$
Question Number 94334 Answers: 1 Comments: 0
$${let}\:{f}\left({x}\right)\:=\frac{{sinx}}{{x}}{if}\:{x}\neq\mathrm{0}\:\:{and}\:{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{findf}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie}\:{st}\:{x}_{\mathrm{0}} =\mathrm{0}\:{and}\:{x}_{\mathrm{0}} =\frac{\pi}{\mathrm{2}} \\ $$
Question Number 94333 Answers: 1 Comments: 0
$${developp}\:{at}\:{integr}\:{serie}\:\int_{−\infty} ^{{x}} \:\frac{{dt}}{{t}^{\mathrm{4}} \:+{t}^{\mathrm{2}} \:+\mathrm{1}} \\ $$
Question Number 94332 Answers: 0 Comments: 0
$${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)=\left({arcsinx}\right)^{\mathrm{2}} \\ $$
Question Number 94331 Answers: 2 Comments: 0
$$\left.\mathrm{1}\right)\:{calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{{n}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}} \\ $$$$ \\ $$
Question Number 94328 Answers: 2 Comments: 0
$$\mathrm{y}'\:+\:\mathrm{xy}\:=\:\mathrm{x}\: \\ $$
Question Number 94324 Answers: 0 Comments: 0
Question Number 94319 Answers: 0 Comments: 4
Question Number 94318 Answers: 0 Comments: 2
$$\mathrm{Given}\:\mathrm{f}\left(\mathrm{xy}\right)\:=\:\mathrm{f}\left(\mathrm{x}+\mathrm{y}\right)\:\mathrm{and}\: \\ $$$$\mathrm{f}\left(\mathrm{7}\right)\:=\:\mathrm{7}.\:\mathrm{find}\:\mathrm{f}\left(\mathrm{1008}\right)\: \\ $$
Question Number 94341 Answers: 0 Comments: 0
Question Number 94314 Answers: 0 Comments: 0
Question Number 94313 Answers: 0 Comments: 0
Question Number 94312 Answers: 0 Comments: 3
$$\underset{\mathrm{0}} {\overset{{a}} {\int}}\:\frac{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }{\left({a}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:? \\ $$
Question Number 94311 Answers: 0 Comments: 0
$${explicit}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{ax}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx}\:{with}\:\mathrm{0}<{a}<\mathrm{1} \\ $$
Question Number 94310 Answers: 2 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx} \\ $$$$ \\ $$
Question Number 94309 Answers: 0 Comments: 0
Pg 1208 Pg 1209 Pg 1210 Pg 1211 Pg 1212 Pg 1213 Pg 1214 Pg 1215 Pg 1216 Pg 1217
Terms of Service
Privacy Policy
Contact: info@tinkutara.com