Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1213

Question Number 92957    Answers: 0   Comments: 12

A updated version of upcoming update is available at www.tinkutara.com.

$$\mathrm{A}\:\mathrm{updated}\:\mathrm{version}\:\mathrm{of}\:\mathrm{upcoming} \\ $$$$\mathrm{update}\:\mathrm{is}\:\mathrm{available}\:\mathrm{at} \\ $$$$\mathrm{www}.\mathrm{tinkutara}.\mathrm{com}. \\ $$

Question Number 92952    Answers: 0   Comments: 1

∫_(−2) ^2 x^3 (cos((x/2))+(1/2))(√(4−x^2 )) dx

$$\int_{−\mathrm{2}} ^{\mathrm{2}} {x}^{\mathrm{3}} \left({cos}\left(\frac{{x}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\:{dx} \\ $$

Question Number 92949    Answers: 1   Comments: 2

∫(1/x)sin((1/x)) dx

$$\int\frac{\mathrm{1}}{\mathrm{x}}\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\:\mathrm{dx} \\ $$

Question Number 92940    Answers: 0   Comments: 0

prove that Γ(x).Γ(1−x) =(π/(sin(πx))) with 0<x<1

$${prove}\:{that}\:\Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right)\:=\frac{\pi}{{sin}\left(\pi{x}\right)}\:\:{with}\:\mathrm{0}<{x}<\mathrm{1} \\ $$

Question Number 92939    Answers: 0   Comments: 0

find ∫_0 ^1 ((xlnx)/((x^2 +1)^2 ))dx

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{xlnx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 92938    Answers: 1   Comments: 0

find ∫ (dx/((1+cosx)(3−sin^2 x)))

$${find}\:\int\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{cosx}\right)\left(\mathrm{3}−{sin}^{\mathrm{2}} {x}\right)} \\ $$

Question Number 92937    Answers: 2   Comments: 1

find ∫_0 ^(2π) (dx/(3cosx +2))

$${find}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{dx}}{\mathrm{3}{cosx}\:+\mathrm{2}} \\ $$

Question Number 92936    Answers: 2   Comments: 2

find ∫_0 ^(2π) (dx/(cosx +sinx))

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{dx}}{{cosx}\:+{sinx}} \\ $$

Question Number 92935    Answers: 0   Comments: 0

calculate ∫_0 ^∞ (((x^2 −3)dx)/((x^2 −x+1)^2 ))

$${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\left({x}^{\mathrm{2}} −\mathrm{3}\right){dx}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 92934    Answers: 0   Comments: 0

calculate ∫_0 ^1 ((xlnx)/((x+1)^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{xlnx}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 92933    Answers: 0   Comments: 0

prove thst for z∈C−Z (((πz)/(sin(πz))))^2 =Σ_(n=−∞) ^(+∞) (1/((z−n)^2 )) and (((πz)^2 )/(sin^2 (πz)))cos(πz) =Σ_(n=−∞) ^(+∞) (((−1)^n )/((z−n)^2 ))

$${prove}\:{thst}\:{for}\:{z}\in{C}−{Z}\:\:\:\:\:\left(\frac{\pi{z}}{{sin}\left(\pi{z}\right)}\right)^{\mathrm{2}} \:=\sum_{{n}=−\infty} ^{+\infty} \:\frac{\mathrm{1}}{\left({z}−{n}\right)^{\mathrm{2}} } \\ $$$${and}\:\:\frac{\left(\pi{z}\right)^{\mathrm{2}} }{{sin}^{\mathrm{2}} \left(\pi{z}\right)}{cos}\left(\pi{z}\right)\:=\sum_{{n}=−\infty} ^{+\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({z}−{n}\right)^{\mathrm{2}} } \\ $$

Question Number 92925    Answers: 0   Comments: 4

S_n =Σ_(k=1) ^∞ (1/((4k^2 −1)^n )) find a simpler form

$${S}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{4}{k}^{\mathrm{2}} −\mathrm{1}\right)^{{n}} } \\ $$$${find}\:{a}\:{simpler}\:{form} \\ $$

Question Number 92923    Answers: 1   Comments: 0

Solve 1+(x/(2!))+(x^2 /(4!))+(x^3 /(6!))+∙∙∙ =0

$$\mathrm{Solve} \\ $$$$\mathrm{1}+\frac{\mathrm{x}}{\mathrm{2}!}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{4}!}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}!}+\centerdot\centerdot\centerdot\:=\mathrm{0} \\ $$

Question Number 92921    Answers: 0   Comments: 2

what is string theory

$${what}\:{is}\:{string}\:{theory} \\ $$

Question Number 92910    Answers: 2   Comments: 2

∫(dt/(3sint+4cost))

$$\int\frac{\mathrm{dt}}{\mathrm{3sint}+\mathrm{4cost}} \\ $$

Question Number 92889    Answers: 0   Comments: 1

learning distancing ∫ ln((√(1+x))+(√(1−x))) dx

$$\mathrm{learning}\:\mathrm{distancing} \\ $$$$\int\:\mathrm{ln}\left(\sqrt{\mathrm{1}+\mathrm{x}}+\sqrt{\mathrm{1}−\mathrm{x}}\right)\:\mathrm{dx} \\ $$

Question Number 92888    Answers: 1   Comments: 3

∫((5−t)/(1+(√((t−4)))))dt

$$\int\frac{\mathrm{5}−\mathrm{t}}{\mathrm{1}+\sqrt{\left(\mathrm{t}−\mathrm{4}\right)}}\mathrm{dt} \\ $$$$ \\ $$

Question Number 92898    Answers: 0   Comments: 0

Find a,b,c ∈ Z that satisfy (7a + 15b + 0c) mod 26 = 8 (5a + 16b + 6c) mod 26 = 21 (6a + 3b + 20c) mod 26 = 14

$$\mathrm{Find}\:{a},{b},{c}\:\in\:\mathbb{Z}\:\mathrm{that}\:\mathrm{satisfy} \\ $$$$\left(\mathrm{7}{a}\:+\:\mathrm{15}{b}\:+\:\mathrm{0}{c}\right)\:\mathrm{mod}\:\mathrm{26}\:=\:\mathrm{8} \\ $$$$\left(\mathrm{5}{a}\:+\:\mathrm{16}{b}\:+\:\mathrm{6}{c}\right)\:\mathrm{mod}\:\mathrm{26}\:=\:\mathrm{21} \\ $$$$\left(\mathrm{6}{a}\:+\:\mathrm{3}{b}\:+\:\mathrm{20}{c}\right)\:\mathrm{mod}\:\mathrm{26}\:=\:\mathrm{14} \\ $$

Question Number 92885    Answers: 0   Comments: 10

Question Number 92880    Answers: 1   Comments: 0

solve 8ϰ+4=3(ϰ−1)+7

$$\mathrm{solve}\:\mathrm{8}\varkappa+\mathrm{4}=\mathrm{3}\left(\varkappa−\mathrm{1}\right)+\mathrm{7} \\ $$

Question Number 92876    Answers: 0   Comments: 3

(d/dx)((√(1−x))+(√(x−2)))

$$\frac{{d}}{{dx}}\left(\sqrt{\mathrm{1}−{x}}+\sqrt{{x}−\mathrm{2}}\right) \\ $$

Question Number 92899    Answers: 0   Comments: 1

y=−2.241x+1.585 how do i find value of x by rearranging

$${y}=−\mathrm{2}.\mathrm{241}{x}+\mathrm{1}.\mathrm{585} \\ $$$${how}\:{do}\:{i}\:{find}\:{value}\:{of}\:{x}\:{by}\:{rearranging} \\ $$

Question Number 92869    Answers: 0   Comments: 7

∫((−t^3 +2t−t+1)/(t(t^2 +1)))dt

$$\int\frac{−{t}^{\mathrm{3}} +\mathrm{2}{t}−{t}+\mathrm{1}}{{t}\left({t}^{\mathrm{2}} +\mathrm{1}\right)}{dt} \\ $$

Question Number 92862    Answers: 0   Comments: 0

Exercise (D):y=x−1 directed by u^→ (1;1). his normal vector is v^→ (2;−2). 1) Determinate the equation of (Δ) such as t_v^→ =S_((D)) °S_((Δ)) 2)Determinate the nature and caracteristics of this application h=S_((D)) °t_v^→

$$\mathrm{Exercise} \\ $$$$\: \\ $$$$\left(\mathrm{D}\right):\mathrm{y}=\mathrm{x}−\mathrm{1}\:\:\mathrm{directed}\:\mathrm{by}\:\:\:\overset{\rightarrow} {\mathrm{u}}\left(\mathrm{1};\mathrm{1}\right). \\ $$$$\mathrm{his}\:\mathrm{normal}\:\mathrm{vector}\:\mathrm{is}\:\overset{\rightarrow} {\mathrm{v}}\left(\mathrm{2};−\mathrm{2}\right). \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Determinate}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\:\left(\Delta\right)\: \\ $$$$\mathrm{such}\:\mathrm{as}\:\mathrm{t}_{\overset{\rightarrow} {\mathrm{v}}} =\mathrm{S}_{\left(\mathrm{D}\right)} °\mathrm{S}_{\left(\Delta\right)} \\ $$$$\left.\mathrm{2}\right)\mathrm{Determinate}\:\mathrm{the}\:\mathrm{nature}\:\mathrm{and}\:\mathrm{caracteristics} \\ $$$$\mathrm{of}\:\mathrm{this}\:\mathrm{application}\:\mathrm{h}=\mathrm{S}_{\left(\mathrm{D}\right)} °\mathrm{t}_{\overset{\rightarrow} {\mathrm{v}}} \\ $$$$ \\ $$

Question Number 92860    Answers: 0   Comments: 2

(√(1−x^2 )) sin^(−1) (x) dy + y dx = 0

$$\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{x}\right)\:\mathrm{dy}\:+\:\mathrm{y}\:\mathrm{dx}\:=\:\mathrm{0}\: \\ $$

Question Number 92852    Answers: 3   Comments: 1

y′′+2y′+y = x^2 e^(−x) cos x what is particular solution

$$\mathrm{y}''+\mathrm{2y}'+\mathrm{y}\:=\:\mathrm{x}^{\mathrm{2}} \mathrm{e}^{−\mathrm{x}} \mathrm{cos}\:\mathrm{x} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{particular}\:\mathrm{solution} \\ $$$$ \\ $$

  Pg 1208      Pg 1209      Pg 1210      Pg 1211      Pg 1212      Pg 1213      Pg 1214      Pg 1215      Pg 1216      Pg 1217   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com