Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1212
Question Number 88360 Answers: 0 Comments: 2
$$\frac{\mathrm{e}}{\sqrt{\mathrm{e}}}\:×\:\frac{\sqrt[{\mathrm{3}\:\:}]{\mathrm{e}}}{\sqrt[{\mathrm{4}\:\:}]{\mathrm{e}}}\:×\:\frac{\sqrt[{\mathrm{5}\:\:}]{\mathrm{e}}}{\sqrt[{\mathrm{6}\:\:}]{\mathrm{e}}}\:×\:\frac{\sqrt[{\mathrm{7}\:\:}]{\mathrm{e}}}{\sqrt[{\mathrm{8}\:\:}]{\mathrm{e}}}×...=? \\ $$
Question Number 88357 Answers: 0 Comments: 1
$$\int\underset{\mathrm{1}} {\overset{\mathrm{4}} {\:}}\:\frac{\mathrm{dx}}{\left(\mathrm{4x}−\mathrm{1}\right)\sqrt{\mathrm{x}}} \\ $$
Question Number 88352 Answers: 1 Comments: 1
Question Number 88349 Answers: 1 Comments: 1
Question Number 88339 Answers: 3 Comments: 3
$$\:\int\left(\:\sqrt{\mathrm{tan}\:{x}\:}\:+\:\sqrt{\mathrm{cot}\:{x}}\:\right){dx}\:=\:? \\ $$
Question Number 88329 Answers: 0 Comments: 4
Question Number 88332 Answers: 0 Comments: 0
Question Number 88314 Answers: 2 Comments: 1
$$\left(\:{a},{b}\:\right){are}\:{complex}\:{numbers}\:{and}\:{a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} =\mathrm{0} \\ $$$${find}\:\left(\frac{{a}}{{a}+{b}}\right)^{\mathrm{2020}} +\left(\frac{{b}}{{a}+{b}}\right)^{\mathrm{2020}} \\ $$$$ \\ $$
Question Number 88310 Answers: 1 Comments: 1
Question Number 88306 Answers: 0 Comments: 5
Question Number 88301 Answers: 0 Comments: 2
$${A}\:{circle}\:{touches}\:{the}\:{four}\:{sides} \\ $$$${of}\:{quadrilateral}\:{ABCD}.\:\mathrm{Show}/\mathrm{prove} \\ $$$$\mathrm{that}\:\mathrm{A}{B}+{CD}={BC}+{DA}. \\ $$$$\mathrm{Please}\:\mathrm{help}. \\ $$
Question Number 88300 Answers: 0 Comments: 0
Question Number 88307 Answers: 1 Comments: 0
$$\int\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} −\frac{\mathrm{5}}{\mathrm{2}}{x}−\frac{\mathrm{3}}{\mathrm{2}}}\:{dx} \\ $$
Question Number 88289 Answers: 0 Comments: 5
Question Number 88288 Answers: 1 Comments: 1
Question Number 88286 Answers: 0 Comments: 1
Question Number 88272 Answers: 1 Comments: 1
Question Number 88270 Answers: 0 Comments: 1
Question Number 88263 Answers: 1 Comments: 1
$${prove}\:{that}\: \\ $$$$\mid\frac{{e}^{{z}} −{e}^{−{z}} }{\mathrm{2}}\mid^{\mathrm{2}} +{cos}^{\mathrm{2}} {y}={sinh}^{\mathrm{2}} {x}\:\:\:\:\:{when}\:{z}={x}+{iy} \\ $$$$ \\ $$
Question Number 88261 Answers: 1 Comments: 0
Question Number 88253 Answers: 0 Comments: 0
$$\int\:\frac{\mathrm{ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)\:{dx}}{{x}+\mathrm{1}}\: \\ $$
Question Number 88252 Answers: 0 Comments: 0
Question Number 88251 Answers: 0 Comments: 0
Question Number 88245 Answers: 2 Comments: 0
Question Number 88240 Answers: 1 Comments: 3
Question Number 88239 Answers: 0 Comments: 0
Pg 1207 Pg 1208 Pg 1209 Pg 1210 Pg 1211 Pg 1212 Pg 1213 Pg 1214 Pg 1215 Pg 1216
Terms of Service
Privacy Policy
Contact: info@tinkutara.com