Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1212
Question Number 94079 Answers: 3 Comments: 0
$$\underset{\mathrm{2}} {\overset{\mathrm{4}} {\int}}\frac{\mathrm{3}{x}−\mathrm{2}}{{x}^{\mathrm{2}} −\mathrm{4}}\:{dx}\:=\:? \\ $$
Question Number 94078 Answers: 0 Comments: 0
$$\mathrm{Given}\:\mathrm{the}\:\mathrm{function}\:{f}\:\mathrm{defined}\:\mathrm{by}\:{f}\left({x}\right)\:=\:\frac{\mid{x}−\mathrm{2}\mid}{\mathrm{1}−\mid{x}\mid} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{state}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{of}\:{f}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{show}\:\mathrm{that}\: \\ $$$$\:\:\:\:\:{f}\left({x}\right)\:=\:\begin{cases}{\frac{\mathrm{2}−{x}}{\mathrm{1}+{x}}\:,\:{x}\:<\:\mathrm{0}}\\{\frac{\mathrm{2}−{x}}{\mathrm{1}−{x}},\:\mathrm{0}\:\leqslant\:{x}\:<\:\mathrm{2}}\\{\frac{{x}−\mathrm{2}}{\mathrm{1}−{x}}\:,\:{x}\:\geqslant\:\mathrm{2}}\end{cases} \\ $$$$\left(\mathrm{iii}\right)\:\mathrm{Investigate}\:\mathrm{the}\:\mathrm{continuity}\:\mathrm{of}\:{f}\:\mathrm{at}\:{x}\:=\:\mathrm{2}. \\ $$
Question Number 94071 Answers: 1 Comments: 2
Question Number 94125 Answers: 1 Comments: 0
$$\mathrm{Given}\:\mathrm{a}\:\mathrm{function}\: \\ $$$$\mathrm{H}\left(\mathrm{x}\right)\:=\:\mid\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\mid\:+\:\sqrt{\mathrm{2}}\:\mathrm{cos}\:\mathrm{x} \\ $$$$\mathrm{with}\:\mathrm{x}\:\in\:\left[\:\mathrm{0},\:\mathrm{2}\pi\:\right]\: \\ $$$$\mathrm{find}\:\mathrm{H}\left(\mathrm{x}\right)_{\mathrm{max}} \:\mathrm{and}\:\mathrm{H}\left(\mathrm{x}\right)_{\mathrm{min}} \\ $$
Question Number 94124 Answers: 0 Comments: 3
$$\mathrm{20}+{a}={a}\:{cosh}\left(\frac{\mathrm{75}}{{a}}\right) \\ $$$${a}=? \\ $$
Question Number 94123 Answers: 0 Comments: 0
$${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{sin}^{\mathrm{2}{n}} \left({x}\right)}{{x}^{\mathrm{2}} }{d}=\int_{\mathrm{0}} ^{\infty} \frac{{sin}^{\mathrm{2}{n}−\mathrm{1}} \left({x}\right)}{{x}}{dx} \\ $$$$ \\ $$$$ \\ $$
Question Number 94114 Answers: 0 Comments: 1
$${Find}\:\:\:\underset{\:\mathrm{1}} {\int}\overset{\:\infty} {\:}\:\:\frac{\mathrm{sin}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} }\:\:{dx}\:\: \\ $$
Question Number 94110 Answers: 1 Comments: 2
Question Number 94025 Answers: 0 Comments: 5
$$\mathrm{LCM}\left({a},\frac{\mathrm{3}}{\mathrm{5}}{a}\right)=\mathrm{3}{a}\:\wedge\:\mathrm{HCF}\left({a},\frac{\mathrm{3}}{\mathrm{5}}{a}\right)=\frac{\mathrm{1}}{\mathrm{5}}{a} \\ $$$${a}=? \\ $$
Question Number 94020 Answers: 0 Comments: 4
Question Number 94383 Answers: 4 Comments: 0
$$\boldsymbol{\mathrm{Integrate}}: \\ $$$$\:\:\left(\boldsymbol{\mathrm{i}}\right).\int\:\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{4}} }\boldsymbol{\mathrm{dx}} \\ $$$$\:\left(\boldsymbol{\mathrm{ii}}\right).\int_{\beta} ^{\:\alpha} \sqrt{\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\alpha}\right)\left(\beta−\boldsymbol{\mathrm{x}}\right)}\:\:\boldsymbol{\mathrm{dx}} \\ $$$$\:\left(\boldsymbol{\mathrm{iii}}\right).\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\int_{\mathrm{0}} ^{\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{y}}/\boldsymbol{\mathrm{x}}} \boldsymbol{\mathrm{dx}}\:\boldsymbol{\mathrm{dy}} \\ $$
Question Number 94098 Answers: 1 Comments: 1
$$\:\:\mathrm{Integrate}: \\ $$$$\:\:\int\:\frac{\:\:\mathrm{dx}}{\mathrm{a}\:\mathrm{sin}\:\mathrm{x}+\:\mathrm{b}\:\mathrm{cos}\:\mathrm{x}} \\ $$
Question Number 94097 Answers: 2 Comments: 1
$$\mathrm{find}\:\mathrm{all}\:\mathrm{integers}\:{n}\:\:\mathrm{for}\:\mathrm{which}\:\:\mathrm{13}\:\mid\mathrm{4}\left({n}^{\mathrm{2}} +\mathrm{1}\right). \\ $$
Question Number 94119 Answers: 0 Comments: 1
$$\int\:\mathrm{cot}^{−\mathrm{1}} \left(\sqrt{\mathrm{x}}\right)\:\mathrm{dx}\: \\ $$
Question Number 94096 Answers: 1 Comments: 1
$$\mathrm{The}\:\mathrm{result}\:\mathrm{of}\:\mathrm{adding}\:\mathrm{the}\:\mathrm{odd}\:\mathrm{natural}\:\mathrm{numbers}\:\mathrm{is}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:=\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{1}\:+\:\mathrm{3}=\mathrm{4} \\ $$$$\:\:\mathrm{1}\:+\:\mathrm{3}+\:\mathrm{5}\:=\:\mathrm{9} \\ $$$$\mathrm{1}\:+\:\mathrm{3}\:+\:\mathrm{5}\:+\mathrm{7}\:=\:\mathrm{16} \\ $$$$\mathrm{1}\:+\:\mathrm{3}\:+\:\mathrm{5}\:+\:\mathrm{7}+\mathrm{9}\:=\:\mathrm{25} \\ $$$$\:\mathrm{show}\:\mathrm{that}\:\mathrm{from}\:\mathrm{this}\:\mathrm{result},\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{2}{i}−\mathrm{1}\right)\:=\:{n}^{\mathrm{2}} . \\ $$
Question Number 94095 Answers: 0 Comments: 0
$$\mathrm{How}\:\mathrm{many}\:\mathrm{subgroups}\:\mathrm{do}\:\mathrm{Z}_{\mathrm{3}} \oplus\mathrm{Z}_{\mathrm{16}\:} \:\mathrm{has}?\:\mathrm{Justify}. \\ $$
Question Number 94093 Answers: 0 Comments: 0
$${evaluate}\:{the}\:{inequality}\:{for}\:{n}\geqslant\mathrm{2} \\ $$$$\left(\frac{\pi}{\mathrm{2}}−\frac{\mathrm{1}}{{n}}\right)\frac{\mathrm{1}}{\sqrt[{{n}}]{{n}}}<\int_{\frac{\mathrm{1}}{{n}}} ^{\frac{\pi}{\mathrm{2}}} \sqrt[{{n}}]{{sin}\left({t}\right)}{dt} \\ $$
Question Number 94117 Answers: 0 Comments: 8
$$\mathrm{Another}\:\mathrm{update}\:\mathrm{available}\:\mathrm{to} \\ $$$$\mathrm{provide}\:\mathrm{ability}\:\mathrm{to}\:\mathrm{bookmark}. \\ $$
Question Number 93991 Answers: 1 Comments: 11
Question Number 93982 Answers: 0 Comments: 7
$$\mathrm{LCM}\left({a},\frac{\mathrm{3}}{\mathrm{5}}{a}\right)=\mathrm{3}{a}\: \\ $$$${a}=? \\ $$
Question Number 93976 Answers: 1 Comments: 10
Question Number 93986 Answers: 2 Comments: 0
Question Number 93963 Answers: 0 Comments: 12
$${we}\:{have}\:{for}\:{quadratic}\:{equations} \\ $$$${x}=\frac{−{b}\pm\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{a}} \\ $$$${what}\:{about}\:{cubic}\:{equation}\:{is}\:{there}\:{any} \\ $$$${rules}\:{or}\:{ways}\:{to}\:{solve}? \\ $$
Question Number 93959 Answers: 1 Comments: 0
$$\int\left(\mathrm{tan3x}+\mathrm{sec3x}\right)\mathrm{dx}= \\ $$
Question Number 93958 Answers: 2 Comments: 1
$$\int\frac{\mathrm{sinx}−\mathrm{cosx}}{\mathrm{sinx}+\mathrm{cosx}}\mathrm{dx}= \\ $$
Question Number 93957 Answers: 0 Comments: 9
$$\: \\ $$$$\:\mathrm{log}_{\sqrt{\mathrm{17}}−\sqrt{\mathrm{2}}} \left(\frac{\mathrm{15}}{\sqrt{\mathrm{19}+\sqrt{\mathrm{136}}}}\right)\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{log}_{\sqrt{\mathrm{19}}−\sqrt{\mathrm{3}}} \left(\frac{\mathrm{1}}{\mathrm{22}−\sqrt{\mathrm{228}}}\right)\mathrm{x}\:=\:\mathrm{3} \\ $$$$\: \\ $$$$\:\mathrm{x}\:=\:? \\ $$
Pg 1207 Pg 1208 Pg 1209 Pg 1210 Pg 1211 Pg 1212 Pg 1213 Pg 1214 Pg 1215 Pg 1216
Terms of Service
Privacy Policy
Contact: info@tinkutara.com