Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1212
Question Number 83943 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sec}\:\mathrm{6x}−\mathrm{cos}\:\mathrm{2x}}{\mathrm{2x}\:\mathrm{tan}\:\mathrm{5x}} \\ $$$$ \\ $$
Question Number 83941 Answers: 1 Comments: 0
$$\mathrm{If}\:\sqrt[{\mathrm{3}}]{\mathrm{2}\:}\:+\:\sqrt[{\mathrm{3}\:}]{\mathrm{4}}\:+\:\sqrt[{\mathrm{3}\:}]{\mathrm{8}\:}\:=\:\mathrm{x}\: \\ $$$$\mathrm{then}\:\mathrm{x}^{\mathrm{3}} −\mathrm{6x}^{\mathrm{2}} +\mathrm{6x}+\mathrm{6}\:=\:? \\ $$
Question Number 83927 Answers: 1 Comments: 0
$$\int\frac{{sinh}\left({x}\right)+{e}^{\mathrm{3}{x}} }{{sinh}\left({x}\right)−{e}^{{x}} }\:{dx} \\ $$
Question Number 83923 Answers: 1 Comments: 0
$$\int\:\:\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{20}}{\left(\mathrm{xsin}\:\mathrm{x}+\mathrm{5cos}\:\mathrm{x}\right)^{\mathrm{2}} }\:\mathrm{dx}\:=\:? \\ $$
Question Number 83921 Answers: 1 Comments: 0
$$\int\:\:\frac{\mathrm{2x}^{\mathrm{12}} +\mathrm{5x}^{\mathrm{9}} }{\left(\mathrm{x}^{\mathrm{5}} +\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{3}} }\:\mathrm{dx}\:=\:? \\ $$
Question Number 83919 Answers: 0 Comments: 1
$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{3}}{\pi}\mathrm{arc}\:\mathrm{tan}\:{x}\right)^{\mathrm{2}{x}} \:=\:? \\ $$
Question Number 83917 Answers: 5 Comments: 0
$${find}\:\int\:\:\:\frac{{dx}}{\left(\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{2}} } \\ $$
Question Number 83931 Answers: 1 Comments: 1
$$\frac{\mathrm{1}}{\left(\sqrt{\mathrm{1}}+\sqrt{\mathrm{2}}\right)\left(\sqrt[{\mathrm{4}\:}]{\mathrm{1}}+\sqrt[{\mathrm{4}\:}]{\mathrm{2}}\right)}\:+\:\frac{\mathrm{1}}{\left(\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}\right)\left(\sqrt[{\:\mathrm{4}}]{\mathrm{2}}+\sqrt[{\mathrm{4}\:}]{\mathrm{3}}\right)}\:+ \\ $$$$\frac{\mathrm{1}}{\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{4}}\right)\left(\sqrt[{\mathrm{4}\:}]{\mathrm{3}}+\sqrt[{\mathrm{4}\:}]{\mathrm{4}}\right)}\:+\:...\:+\:\frac{\mathrm{1}}{\left(\sqrt{\mathrm{255}}+\sqrt{\mathrm{256}}\right)\left(\sqrt[{\mathrm{4}\:}]{\mathrm{255}}+\sqrt[{\mathrm{4}\:}]{\mathrm{256}}\right)} \\ $$$$=\:...\: \\ $$
Question Number 83910 Answers: 2 Comments: 1
$$\mathrm{find}\:\mathrm{all}\:\mathrm{6}\:\mathrm{digit}\:\mathrm{numbers}\:\mathrm{which}\:\mathrm{are}\:\mathrm{not} \\ $$$$\mathrm{only}\:\mathrm{palindrome}\:\mathrm{but}\:\mathrm{also}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{495}. \\ $$
Question Number 83899 Answers: 0 Comments: 1
$$\mathrm{Defined}\:\mathrm{a}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{such}\: \\ $$$$\mathrm{that}\:\mathrm{f}\left(\mathrm{1}−\mathrm{x}\right)+\mathrm{2f}\left(\mathrm{x}\right)=\:\mathrm{nx}\: \\ $$$$\mathrm{for}\:\mathrm{m}\:,\mathrm{n}\:>\:\mathrm{1}\:,\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\int\underset{\mathrm{1}} {\overset{\:\mathrm{m}} {\:}}\left(\mathrm{2n}+\mathrm{6f}\left(\frac{\mathrm{m}}{\mathrm{x}}\right)\right)\:\mathrm{dx}\:\mathrm{is}\:... \\ $$
Question Number 83898 Answers: 0 Comments: 4
$$\int\frac{\mathrm{du}}{\sqrt{\mathrm{u}^{\mathrm{2}} −\mathrm{1}\:}−\mathrm{u}} \\ $$
Question Number 83893 Answers: 0 Comments: 1
$$\int\frac{\mathrm{du}}{\mathrm{u}−\mathrm{u}^{\mathrm{2}} } \\ $$
Question Number 83886 Answers: 0 Comments: 15
$${To}\:{the}\:{developers}\:{of}\:{TinkuTara}: \\ $$$${problem}\:\mathrm{1}: \\ $$$${i}\:{get}\:{no}\:{notifications}\:{when}\:{my}\:{posts} \\ $$$${are}\:{updated}. \\ $$$$ \\ $$$${problem}\:\mathrm{2}: \\ $$$${i}\:{can}\:{edit}\:{my}\:{post},\:{see}\:{picture}\:\mathrm{1},\:{but} \\ $$$${the}\:{content}\:{is}\:{not}\:{visiable},\:{see}\:{picture}\:\mathrm{2}. \\ $$
Question Number 83935 Answers: 0 Comments: 0
$${If}\:\:\boldsymbol{{x}}^{\mathrm{4}} \:{and}\:{higher}\:{powers}\:{of}\:{x}\:{are}\:{neglected},\:{show}\:{that} \\ $$$$\sqrt{\left(\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}+{x}^{\mathrm{2}} }\right)=\mathrm{1}−{x}+\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{3}} } \\ $$
Question Number 83876 Answers: 0 Comments: 0
Question Number 83874 Answers: 1 Comments: 1
Question Number 83871 Answers: 0 Comments: 4
$$\mathrm{If}\:\mathrm{equation}\: \\ $$$$\begin{cases}{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }+\sqrt{\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }+\sqrt{\mathrm{x}^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{3}\right)^{\mathrm{2}} }+\sqrt{\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{3}\right)^{\mathrm{2}} }=\mathrm{10}}\\{\mathrm{x}+\mathrm{2y}=\:\mathrm{5z}}\end{cases} \\ $$$$\mathrm{has}\:\mathrm{solution}\:\mathrm{is}\:\left(\mathrm{a},\mathrm{b},\mathrm{c}\right).\: \\ $$$$\mathrm{find}\:\mathrm{a}+\mathrm{2b}+\mathrm{3c}\: \\ $$
Question Number 83865 Answers: 0 Comments: 3
$$\underset{{x}\rightarrow−\infty\:} {\mathrm{lim}}\:\left(\mathrm{x}\sqrt{\mathrm{2x}+\mathrm{2}}−\mathrm{x}\sqrt{\mathrm{2x}+\mathrm{3}}\right) \\ $$
Question Number 83864 Answers: 0 Comments: 3
$$\mathrm{what}\:\mathrm{Maclaurin}\:\mathrm{series}\:\mathrm{of}\:\mathrm{function} \\ $$$$\mathrm{tan}\:\left(\mathrm{x}\right)? \\ $$
Question Number 83861 Answers: 0 Comments: 3
$$\mathrm{An}\:\mathrm{object}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{7kg}\:\mathrm{is}\:\mathrm{sliding}\:\mathrm{down} \\ $$$$\mathrm{a}\:\mathrm{frictionless}\:\mathrm{20m}\:\mathrm{inclined}\:\mathrm{plane}. \\ $$$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{object}\:\mathrm{when}\: \\ $$$$\mathrm{it}\:\mathrm{reaches}\:\mathrm{the}\:\mathrm{ground}. \\ $$
Question Number 83859 Answers: 0 Comments: 1
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\:\mathrm{cot}\:^{\mathrm{2}} {x}\right)=\:? \\ $$
Question Number 83852 Answers: 0 Comments: 3
$${f}\left(\alpha\right)=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−\alpha{x}} {sin}\left({x}\right)}{{x}}{dx} \\ $$
Question Number 83850 Answers: 2 Comments: 1
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:{f},\:\mathrm{defined}\:\mathrm{by} \\ $$$$\:{f}\left({x}\right)\:=\:\frac{{x}}{\mathrm{1}+\:{x}^{\mathrm{2}} }\:,\:{x}\in\mathbb{R} \\ $$
Question Number 83849 Answers: 0 Comments: 3
$$\mathrm{Gven}\:\mathrm{that}\:{y}\:=\:{e}^{−{x}} \mathrm{sin}{bx}\:,\mathrm{where}\:{b}\:\mathrm{is}\:\mathrm{a}\:\mathrm{constant},\mathrm{show}\:\mathrm{that} \\ $$$$\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\mathrm{2}\frac{{dy}}{{dx}}\:+\:\left(\mathrm{1}\:+\:{b}^{\mathrm{2}} \right){y}\:=\:\mathrm{0}. \\ $$
Question Number 83842 Answers: 0 Comments: 4
$$\int\frac{{ln}\left({x}\right)}{{ln}\left(\mathrm{6}{x}−{x}^{\mathrm{2}} \right)}{dx} \\ $$
Question Number 83834 Answers: 1 Comments: 2
Pg 1207 Pg 1208 Pg 1209 Pg 1210 Pg 1211 Pg 1212 Pg 1213 Pg 1214 Pg 1215 Pg 1216
Terms of Service
Privacy Policy
Contact: info@tinkutara.com