Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1210
Question Number 95180 Answers: 0 Comments: 1
Question Number 95167 Answers: 0 Comments: 2
$$\mathrm{the}\:\mathrm{first}\:\mathrm{term}\:\mathrm{in}\:\mathrm{a}\:\mathrm{geometric}\:\mathrm{series}\:\mathrm{is}\:\frac{\left(\mathrm{2}{x}\:+\:\mathrm{7}\right)}{\mathrm{2}{x}−\mathrm{5}}\:\mathrm{and}\:\mathrm{the}\:\mathrm{common}\:\mathrm{ratio}\:\mathrm{is} \\ $$$$\:\frac{\left(\mathrm{2}{x}−\mathrm{5}\right)}{\mathrm{2}{x}\:+\:\mathrm{7}}\:\mathrm{find}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:{x}\:\mathrm{for}\:\mathrm{which}\:\mathrm{all}\:\mathrm{the}\:\mathrm{terms}\:\mathrm{are}\:\mathrm{possible}. \\ $$
Question Number 95164 Answers: 0 Comments: 3
$${if}\:{a}_{{k}} =\mathrm{tan}\:\left(\theta+\frac{{k}\pi}{{n}}\right), \\ $$$${find}\:\frac{\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{k}} }{\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{a}_{{k}} }=? \\ $$
Question Number 95159 Answers: 1 Comments: 1
$$\sqrt[{\mathrm{3}\:\:}]{\mathrm{8}−\mathrm{x}}\:+\:\sqrt{\mathrm{x}}\:=\:\mathrm{2}\: \\ $$
Question Number 95158 Answers: 0 Comments: 0
$${find}\:{the}\:{domain}\:{and}\:{range} \\ $$$${f}\left({x}\right)=\lfloor\frac{\mathrm{1}}{{sin}\left\{{x}\right\}}\rfloor \\ $$
Question Number 95150 Answers: 1 Comments: 0
$$\mathrm{how}\:\mathrm{do}\:\mathrm{you}\:\mathrm{solve}\:\mathrm{f}\left(\mathrm{x}\right)\:+\mathrm{2}\:\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}}\right)\:=\:\mathrm{x}\: \\ $$$$\mathrm{for}\:\mathrm{f}\:?\: \\ $$
Question Number 95145 Answers: 1 Comments: 0
$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{14}}\:+\:\frac{\mathrm{1}}{\mathrm{35}}\:+\frac{\mathrm{1}}{\mathrm{65}}\:+\:\frac{\mathrm{1}}{\mathrm{104}}\:+\:...\:? \\ $$
Question Number 95140 Answers: 0 Comments: 2
$$\mathrm{what}\:\mathrm{is}\:\mathrm{range}\:\mathrm{of}\:\mathrm{a}\:\mathrm{function}\: \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\mathrm{x}+\mathrm{1}}{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}}\: \\ $$
Question Number 95133 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{x}^{\mathrm{2}} .\mathrm{e}^{\:−\mathrm{2x}} \right)\:=\:? \\ $$
Question Number 95132 Answers: 0 Comments: 0
$$\mathrm{dolve}\:\:\mathrm{xy}^{''} \:+\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\mathrm{y}^{'} \:+\mathrm{3y}\:=\mathrm{x}\:\mathrm{e}^{−\mathrm{2x}} \\ $$
Question Number 95127 Answers: 0 Comments: 1
Question Number 95121 Answers: 1 Comments: 1
Question Number 95119 Answers: 1 Comments: 0
$$\:\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equations}:− \\ $$$$\bigstar.\left(\mathrm{x}\:\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\right)\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:−\mathrm{x}\:\mathrm{cos}\:\mathrm{x}\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\:\mathrm{y}\:\mathrm{cos}\:\mathrm{x}=\mathrm{0}. \\ $$
Question Number 95115 Answers: 2 Comments: 0
$$\int\:\mathrm{e}^{\:{x}} \:\sqrt{\mathrm{1}+{e}^{\:\mathrm{2}{x}} }\:{dx}\:=\:?\: \\ $$
Question Number 95108 Answers: 1 Comments: 0
$$\mid\mathrm{1}−\mathrm{log}\:_{\left(\frac{\mathrm{1}}{\mathrm{6}}\right)} \left(\mathrm{x}\right)\mid\:+\mathrm{2}\:=\:\mid\mathrm{3}\:−\mathrm{log}\:_{\left(\frac{\mathrm{1}}{\mathrm{6}}\right)} \left(\mathrm{3}\right)\mid\: \\ $$
Question Number 95106 Answers: 2 Comments: 0
$$\begin{cases}{{x}+{y}+{z}\:=\:\mathrm{7}}\\{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:=\:\mathrm{49}}\\{{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} \:=\:\mathrm{7}}\end{cases} \\ $$$${find}\:{x};\:\mathrm{y}\:;\:{z}\: \\ $$
Question Number 95098 Answers: 2 Comments: 0
$$\left[\:\frac{\mathrm{y}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\:+\:\frac{\mathrm{x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\:\right]\:\mathrm{dx}\:+\:\left[\frac{\mathrm{y}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }−\frac{\mathrm{x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\:\right]\mathrm{dy}=\mathrm{0} \\ $$
Question Number 95093 Answers: 2 Comments: 0
$$\mathrm{Solve}: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{y}^{\mathrm{2}} \:\:=\:\:\mathrm{13}\:\:\:\:\:\:\:\:\:\:.......\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\mathrm{2x}^{\mathrm{2}} \:\:+\:\:\mathrm{3y}\:\:=\:\:\mathrm{2xy}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:.......\:\left(\mathrm{ii}\right) \\ $$
Question Number 95068 Answers: 1 Comments: 3
$$\:\:\:\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equations}−: \\ $$$$\:\:\:\mathrm{1}.\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{sin}\left(\mathrm{x}+\mathrm{y}\right)+\:\mathrm{cos}\left(\mathrm{x}+\mathrm{y}\right) \\ $$$$\: \\ $$
Question Number 95062 Answers: 0 Comments: 7
$${solve}\:{for}\:{x},\:{y},\:{z}\:\in\mathbb{C}\:{such}\:{that} \\ $$$$\mid{x}\mid=\mid{y}\mid=\mid{z}\mid=\mathrm{1} \\ $$$${x}+{y}+{z}=\mathrm{1} \\ $$$${xyz}=\mathrm{1} \\ $$
Question Number 95060 Answers: 3 Comments: 0
$${Evaluate} \\ $$$$\int_{\mathrm{0}} ^{\infty} {arcsin}\left({e}^{-{x}} \right)\:{dx} \\ $$$$\int_{\mathrm{0}} ^{\infty} {arccos}\left(\mathrm{1}-\mathrm{2}{e}^{-{x}} \right)\:{dx} \\ $$$${and}\:{Step}\:{Up} \\ $$$${Evaluate} \\ $$$$\int_{\mathrm{0}} ^{\infty} {arccos}\left(\mathrm{1}-{e}^{-{x}} \right)\:{dx} \\ $$$$\int_{-{t}} ^{{t}} {arctan}\left({e}^{-{x}} \right)\:{dx} \\ $$
Question Number 95053 Answers: 0 Comments: 2
Question Number 95048 Answers: 0 Comments: 1
$${a}_{\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{30}} \\ $$$${a}_{\mathrm{2}} =−\frac{\mathrm{1}}{\mathrm{12}} \\ $$$${a}_{\mathrm{3}} =−\frac{\mathrm{1}}{\mathrm{6}} \\ $$$${a}_{\mathrm{4}} =−\frac{\mathrm{7}}{\mathrm{24}} \\ $$$${a}_{\mathrm{5}} =−\frac{\mathrm{7}}{\mathrm{15}} \\ $$$${a}_{\mathrm{6}} =−\frac{\mathrm{7}}{\mathrm{10}} \\ $$$${a}_{\mathrm{7}} =−\mathrm{1} \\ $$$${find}\:{a}_{{k}} \\ $$
Question Number 95020 Answers: 1 Comments: 1
Question Number 95014 Answers: 0 Comments: 10
$$\boldsymbol{\mathrm{If}}\:\:\:\:\:\:\boldsymbol{\mathrm{y}}_{\boldsymbol{\mathrm{n}}\:\:+\:\:\mathrm{1}} \:\:−\:\:\boldsymbol{\mathrm{y}}_{\boldsymbol{\mathrm{n}}} \:\:\:=\:\:\:\mathrm{6},\:\:\:\:\:\:\:\boldsymbol{\mathrm{and}}\:\:\:\:\:\boldsymbol{\mathrm{y}}_{\mathrm{0}} \:\:=\:\:\:\mathrm{7} \\ $$$$\boldsymbol{\mathrm{Find}}\:\:\:\:\:\boldsymbol{\mathrm{y}}_{\boldsymbol{\mathrm{n}}} \\ $$
Question Number 95012 Answers: 0 Comments: 1
$$\int\frac{\mathrm{1}}{\sqrt{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{4}\right)}}{dx} \\ $$
Pg 1205 Pg 1206 Pg 1207 Pg 1208 Pg 1209 Pg 1210 Pg 1211 Pg 1212 Pg 1213 Pg 1214
Terms of Service
Privacy Policy
Contact: info@tinkutara.com