Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1208

Question Number 87534    Answers: 0   Comments: 1

calculate ∫_0 ^(π/4) ((arctan(sinx))/(sinx))dx

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{arctan}\left({sinx}\right)}{{sinx}}{dx} \\ $$

Question Number 87533    Answers: 3   Comments: 2

Question Number 87532    Answers: 0   Comments: 2

(1).Find the general solution: y= px +p^n (2).Solve the differential equation: (x+1)^2 (d^2 y/dx^2 ) + (x+1)(dy/dx)= (2x+3)(2x+4).

$$\:\left(\mathrm{1}\right).\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{general}}\:\boldsymbol{\mathrm{solution}}: \\ $$$$\:\:\:\boldsymbol{\mathrm{y}}=\:\boldsymbol{\mathrm{px}}\:+\boldsymbol{\mathrm{p}}^{\boldsymbol{\mathrm{n}}} \\ $$$$\:\left(\mathrm{2}\right).\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}}: \\ $$$$\:\:\left(\boldsymbol{\mathrm{x}}+\mathrm{1}\right)^{\mathrm{2}} \:\frac{\boldsymbol{\mathrm{d}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{dx}}^{\mathrm{2}} }\:+\:\left(\boldsymbol{\mathrm{x}}+\mathrm{1}\right)\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}=\:\left(\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{3}\right)\left(\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{4}\right). \\ $$$$\:\: \\ $$

Question Number 87530    Answers: 0   Comments: 1

1) calculate U_n =∫_0 ^∞ e^(−n[x]) sin(((πx)/n))dx nnatural and n≥1 2)determine nature of Σ U_n

$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{e}^{−{n}\left[{x}\right]} {sin}\left(\frac{\pi{x}}{{n}}\right){dx}\:\:{nnatural}\:{and}\:{n}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{2}\right){determine}\:{nature}\:{of}\:\Sigma\:{U}_{{n}} \\ $$

Question Number 87527    Answers: 0   Comments: 1

find ∫_0 ^∞ ((arctan(3x))/(x^2 +x+1))dx

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{3}{x}\right)}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx} \\ $$

Question Number 87526    Answers: 0   Comments: 1

calculate ∫_0 ^∞ e^(−[nx]) dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left[{nx}\right]} \:{dx} \\ $$

Question Number 87516    Answers: 1   Comments: 0

{ ((2^((x+y)/3) +2^((x+y)/6) =6)),((x^2 +5y^2 =6xy)) :}

$$\begin{cases}{\mathrm{2}^{\frac{{x}+{y}}{\mathrm{3}}} +\mathrm{2}^{\frac{{x}+{y}}{\mathrm{6}}} =\mathrm{6}}\\{{x}^{\mathrm{2}} +\mathrm{5}{y}^{\mathrm{2}} =\mathrm{6}{xy}}\end{cases} \\ $$

Question Number 87511    Answers: 2   Comments: 0

Question Number 87508    Answers: 0   Comments: 1

Question Number 87505    Answers: 1   Comments: 6

Question Number 87504    Answers: 1   Comments: 0

solve (dy/dx)=2(((2+y)/(1+x+y)))^2

$${solve}\: \\ $$$$\frac{{dy}}{{dx}}=\mathrm{2}\left(\frac{\mathrm{2}+{y}}{\mathrm{1}+{x}+{y}}\right)^{\mathrm{2}} \\ $$

Question Number 87503    Answers: 1   Comments: 4

∫(x^2 /(1+x^5 ))dx

$$\int\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{5}} }{dx} \\ $$

Question Number 87497    Answers: 0   Comments: 0

A complex number z is defined by z = (1/2)(cos θ + isin θ),such that z^n = (1/2^n ) (cos nθ + isin nθ) Using De Moivre′s theorem,or otherwise, show that (i) Σ_(r=0) ^∞ (1/4^r ) sin 2rθ is a convergent geometic progression. (ii) Σ_(r=0) ^∞ (1/4^r ) sin 2r = ((14 sin 2θ)/(17−16cos 2θ))

$$\mathrm{A}\:\mathrm{complex}\:\mathrm{number}\:{z}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{by}\:{z}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cos}\:\theta\:+\:{i}\mathrm{sin}\:\theta\right),\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{z}^{{n}} \:=\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:\left(\mathrm{cos}\:{n}\theta\:+\:{i}\mathrm{sin}\:{n}\theta\right) \\ $$$$\mathrm{Using}\:\mathrm{De}\:\mathrm{Moivre}'\mathrm{s}\:\mathrm{theorem},\mathrm{or}\:\mathrm{otherwise},\:\mathrm{show}\:\mathrm{that}\: \\ $$$$\:\left(\mathrm{i}\right)\:\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{4}^{{r}} }\:\mathrm{sin}\:\mathrm{2r}\theta\:\mathrm{is}\:\mathrm{a}\:\mathrm{convergent}\:\mathrm{geometic}\:\mathrm{progression}. \\ $$$$\left(\mathrm{ii}\right)\:\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{4}^{{r}} }\:\mathrm{sin}\:\mathrm{2}{r}\:=\:\frac{\mathrm{14}\:\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{17}−\mathrm{16cos}\:\mathrm{2}\theta} \\ $$

Question Number 87854    Answers: 0   Comments: 3

∫ (1/(sin x+2cos x+3)) dx

$$\int\:\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{x}+\mathrm{2cos}\:\mathrm{x}+\mathrm{3}}\:\mathrm{dx} \\ $$

Question Number 87492    Answers: 1   Comments: 0

((2+3^2 )/(1!+2!+3!+4!))+((3+4^2 )/(2!+3!+4!+5!))+...+((2013+2014^2 )/(2012!+2013!+2014!+2015!))

$$\frac{\mathrm{2}+\mathrm{3}^{\mathrm{2}} }{\mathrm{1}!+\mathrm{2}!+\mathrm{3}!+\mathrm{4}!}+\frac{\mathrm{3}+\mathrm{4}^{\mathrm{2}} }{\mathrm{2}!+\mathrm{3}!+\mathrm{4}!+\mathrm{5}!}+...+\frac{\mathrm{2013}+\mathrm{2014}^{\mathrm{2}} }{\mathrm{2012}!+\mathrm{2013}!+\mathrm{2014}!+\mathrm{2015}!} \\ $$

Question Number 87488    Answers: 2   Comments: 1

sin^4 x + sin^4 (x+(π/4)) = (1/4) x ∈ [ 0,2π ]

$$\mathrm{sin}\:^{\mathrm{4}} \mathrm{x}\:+\:\mathrm{sin}\:^{\mathrm{4}} \left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{x}\:\in\:\left[\:\mathrm{0},\mathrm{2}\pi\:\right]\: \\ $$

Question Number 90465    Answers: 0   Comments: 6

Question Number 87464    Answers: 0   Comments: 2

x + (√y) = 7 (√x) + y = 11 find x and y

$$\mathrm{x}\:+\:\sqrt{\mathrm{y}}\:=\:\mathrm{7} \\ $$$$\sqrt{\mathrm{x}}\:+\:\mathrm{y}\:=\:\mathrm{11}\: \\ $$$$\mathrm{find}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\: \\ $$

Question Number 87462    Answers: 0   Comments: 7

Calculate lim_(x→1) f(x)=((sin(x−1))/(3x−3)) please detail sirs

$$\mathrm{Calculate}\:\:\:\:\:\:\:\:\mathrm{li}\underset{\mathrm{x}\rightarrow\mathrm{1}} {\mathrm{m}f}\left({x}\right)=\frac{{sin}\left({x}−\mathrm{1}\right)}{\mathrm{3}{x}−\mathrm{3}} \\ $$$${please}\:{detail}\:{sirs} \\ $$

Question Number 87461    Answers: 1   Comments: 1

∫_e^(-1) ^e ((√(1−(lnx)^2 ))/x) dx

$$\underset{{e}^{-\mathrm{1}} } {\overset{\mathrm{e}} {\int}}\:\frac{\sqrt{\mathrm{1}−\left(\mathrm{ln}{x}\right)^{\mathrm{2}} }}{{x}}\:{dx} \\ $$

Question Number 87459    Answers: 0   Comments: 0

find all functions f :R →R so that (x−y)f(x+y) −(x+y) f(x−y) = 4xy (x^2 −y^2 ) ∀x,y ∈R

$$\mathrm{find}\:\mathrm{all}\:\mathrm{functions}\:\mathrm{f}\::\mathbb{R}\:\rightarrow\mathbb{R} \\ $$$$\mathrm{so}\:\mathrm{that}\:\left(\mathrm{x}−\mathrm{y}\right)\mathrm{f}\left(\mathrm{x}+\mathrm{y}\right)\:−\left(\mathrm{x}+\mathrm{y}\right)\:\mathrm{f}\left(\mathrm{x}−\mathrm{y}\right)\:= \\ $$$$\mathrm{4xy}\:\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \right)\:\forall\mathrm{x},\mathrm{y}\:\in\mathbb{R} \\ $$

Question Number 87439    Answers: 0   Comments: 2

{ ((2^x .3^y =6)),((3^x .4^y =12)) :}

$$\begin{cases}{\mathrm{2}^{\mathrm{x}} .\mathrm{3}^{\mathrm{y}} =\mathrm{6}}\\{\mathrm{3}^{\mathrm{x}} .\mathrm{4}^{\mathrm{y}} =\mathrm{12}}\end{cases} \\ $$

Question Number 87424    Answers: 1   Comments: 5

prove that ((sin x − 2 sin x + sin 3x)/(sin x + 2sin x + sin 3x)) ≡ −tan^2 ((x/2))

$$\mathrm{prove}\:\mathrm{that}\:\:\:\frac{\mathrm{sin}\:{x}\:−\:\mathrm{2}\:\mathrm{sin}\:{x}\:+\:\mathrm{sin}\:\mathrm{3}{x}}{\mathrm{sin}\:{x}\:+\:\mathrm{2sin}\:{x}\:+\:\mathrm{sin}\:\mathrm{3}{x}}\:\equiv\:−\mathrm{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right) \\ $$

Question Number 87419    Answers: 1   Comments: 6

if equation sin x + sec x −2tan x −1 = 0 has roots x_1 & x_2 , then the possible value of sin x_1 −cos x_2 ? (a) 4/5 (b) 3/4 (c) 4/3 (d) 3/2 (e) 2

$$\mathrm{if}\:\mathrm{equation}\:\mathrm{sin}\:\mathrm{x}\:+\:\mathrm{sec}\:\mathrm{x}\:−\mathrm{2tan}\:\mathrm{x}\:−\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{has}\:\mathrm{roots}\:\mathrm{x}_{\mathrm{1}} \:\&\:\mathrm{x}_{\mathrm{2}} \:,\:\mathrm{then}\:\mathrm{the}\: \\ $$$$\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\:\mathrm{sin}\:\mathrm{x}_{\mathrm{1}} −\mathrm{cos}\:\mathrm{x}_{\mathrm{2}} \:? \\ $$$$\left(\mathrm{a}\right)\:\mathrm{4}/\mathrm{5}\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{3}/\mathrm{4}\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{4}/\mathrm{3}\: \\ $$$$\left(\mathrm{d}\right)\:\mathrm{3}/\mathrm{2}\:\:\:\:\left(\mathrm{e}\right)\:\mathrm{2} \\ $$

Question Number 87418    Answers: 1   Comments: 0

Question Number 87409    Answers: 1   Comments: 2

∫(sinx)^(1/5) dx

$$\int\left({sinx}\right)^{\frac{\mathrm{1}}{\mathrm{5}}} {dx} \\ $$

  Pg 1203      Pg 1204      Pg 1205      Pg 1206      Pg 1207      Pg 1208      Pg 1209      Pg 1210      Pg 1211      Pg 1212   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com