Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1208

Question Number 88928    Answers: 0   Comments: 4

calculate ∫_0 ^∞ (dx/((x^4 +x^2 +3)^2 ))

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{4}} \:\:+{x}^{\mathrm{2}} \:\:+\mathrm{3}\right)^{\mathrm{2}} } \\ $$

Question Number 88927    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((sin(∣arctanx∣))/(x^2 +1))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left(\mid{arctanx}\mid\right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$

Question Number 88921    Answers: 2   Comments: 0

find x,y x−2y−(√(xy))=0 (√(x−1))−(√(2y−1))=1

$${find}\:{x},{y} \\ $$$${x}−\mathrm{2}{y}−\sqrt{{xy}}=\mathrm{0} \\ $$$$\sqrt{{x}−\mathrm{1}}−\sqrt{\mathrm{2}{y}−\mathrm{1}}=\mathrm{1} \\ $$

Question Number 88918    Answers: 0   Comments: 10

Question Number 88902    Answers: 1   Comments: 4

∫_(1/e) ^e ln∣x∣ dx

$$\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} {ln}\mid{x}\mid\:{dx} \\ $$

Question Number 88899    Answers: 0   Comments: 14

Simplify ((((35+18i(√3)))^(1/3) +((35−18i(√3)))^(1/3) −4)/3)

$${Simplify} \\ $$$$\frac{\sqrt[{\mathrm{3}}]{\mathrm{35}+\mathrm{18}{i}\sqrt{\mathrm{3}}}+\sqrt[{\mathrm{3}}]{\mathrm{35}−\mathrm{18}{i}\sqrt{\mathrm{3}}}−\mathrm{4}}{\mathrm{3}} \\ $$

Question Number 88896    Answers: 1   Comments: 2

find lim_(x→0) ((ln(sin(3x)+cos(3x)))/(ln(sin(x)+cos(x))))

$${find}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{ln}\left({sin}\left(\mathrm{3}{x}\right)+{cos}\left(\mathrm{3}{x}\right)\right)}{{ln}\left({sin}\left({x}\right)+{cos}\left({x}\right)\right)} \\ $$

Question Number 88892    Answers: 0   Comments: 2

Question Number 88894    Answers: 0   Comments: 1

Question Number 88889    Answers: 0   Comments: 1

Question Number 88886    Answers: 1   Comments: 5

Question Number 88882    Answers: 1   Comments: 1

The coefficient of x^3 in ((√x^5 ) +(3/(√x^3 )))^6 is

$$\mathrm{The}\:\mathrm{coefficient}\:\mathrm{of}\:\:{x}^{\mathrm{3}} \:\mathrm{in}\:\left(\sqrt{{x}^{\mathrm{5}} }\:+\frac{\mathrm{3}}{\sqrt{{x}^{\mathrm{3}} }}\right)^{\mathrm{6}} \:\:\mathrm{is} \\ $$

Question Number 88881    Answers: 1   Comments: 0

Question Number 88876    Answers: 0   Comments: 2

Given a 10−digit number X = 1345789026 How many 10−digit number that can be made using every digit from X, with condition: If a number n is located in k^(th) position of X, then the new created number must not contain number n in k^(th) position Example: • Number 1 is located in 1^(st) position of X, hence 1234567890 is not valid, but 2134567890 is valid • Number 5 and 0 are located in 4^(th) and 8^(th) position of X, hence 9435162087 is not valid, but 9431506287 is valid. • 1345026789 is not valid • and so on...

$$\mathrm{Given}\:\mathrm{a}\:\mathrm{10}−\mathrm{digit}\:\mathrm{number}\:{X}\:=\:\mathrm{1345789026} \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{10}−\mathrm{digit}\:\mathrm{number}\:\mathrm{that}\:\mathrm{can}\:\mathrm{be}\:\mathrm{made} \\ $$$$\mathrm{using}\:\mathrm{every}\:\mathrm{digit}\:\mathrm{from}\:{X},\:\mathrm{with}\:\mathrm{condition}: \\ $$$$\mathrm{If}\:\mathrm{a}\:\mathrm{number}\:{n}\:\:\mathrm{is}\:\mathrm{located}\:\mathrm{in}\:{k}^{{th}} \:\mathrm{position}\:\mathrm{of}\:{X},\:\mathrm{then} \\ $$$$\mathrm{the}\:\mathrm{new}\:\mathrm{created}\:\mathrm{number}\:\mathrm{must}\:\mathrm{not}\:\mathrm{contain} \\ $$$$\mathrm{number}\:{n}\:\mathrm{in}\:{k}^{{th}} \:\mathrm{position} \\ $$$$ \\ $$$$\mathrm{Example}: \\ $$$$\bullet\:\mathrm{Number}\:\mathrm{1}\:\mathrm{is}\:\mathrm{located}\:\mathrm{in}\:\mathrm{1}^{{st}} \:\mathrm{position}\:\mathrm{of}\:{X},\:\mathrm{hence} \\ $$$$\mathrm{1234567890}\:\mathrm{is}\:\mathrm{not}\:\mathrm{valid},\:\mathrm{but}\:\mathrm{2134567890} \\ $$$$\mathrm{is}\:\mathrm{valid} \\ $$$$\bullet\:\mathrm{Number}\:\mathrm{5}\:\mathrm{and}\:\mathrm{0}\:\mathrm{are}\:\mathrm{located}\:\mathrm{in}\:\mathrm{4}^{{th}} \:\mathrm{and}\:\mathrm{8}^{{th}} \:\mathrm{position} \\ $$$$\mathrm{of}\:{X},\:\mathrm{hence}\:\mathrm{9435162087}\:\mathrm{is}\:\mathrm{not}\:\mathrm{valid},\:\mathrm{but} \\ $$$$\mathrm{9431506287}\:\mathrm{is}\:\mathrm{valid}. \\ $$$$\bullet\:\mathrm{1345026789}\:\mathrm{is}\:\mathrm{not}\:\mathrm{valid} \\ $$$$\bullet\:\mathrm{and}\:\mathrm{so}\:\mathrm{on}... \\ $$

Question Number 88873    Answers: 0   Comments: 1

3+(√(x^2 −5)) > ∣x−1∣

$$\mathrm{3}+\sqrt{{x}^{\mathrm{2}} −\mathrm{5}}\:>\:\mid{x}−\mathrm{1}\mid\: \\ $$

Question Number 88872    Answers: 0   Comments: 1

The system of equations kx+y+z=1, x+ky+z=k and x+y+kz=k^2 have no solution if k equals

$$\mathrm{The}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations}\:\:\:{kx}+{y}+{z}=\mathrm{1}, \\ $$$${x}+{ky}+{z}={k}\:\:\:\mathrm{and}\:\:\:{x}+{y}+{kz}={k}^{\mathrm{2}} \:\mathrm{have} \\ $$$$\mathrm{no}\:\mathrm{solution}\:\mathrm{if}\:\:\:{k}\:\:\mathrm{equals} \\ $$

Question Number 88871    Answers: 0   Comments: 0

Question Number 88867    Answers: 1   Comments: 1

Question Number 88865    Answers: 0   Comments: 1

Question Number 88863    Answers: 0   Comments: 1

∫((8cos^3 (x))/(8+sin^3 2x))dx

$$\int\frac{\mathrm{8}{cos}^{\mathrm{3}} \left({x}\right)}{\mathrm{8}+{sin}^{\mathrm{3}} \mathrm{2}{x}}{dx} \\ $$$$ \\ $$

Question Number 88860    Answers: 0   Comments: 3

Question Number 88859    Answers: 0   Comments: 1

∫ e^(ax) cos bx dx ∫x^2 e^(2x) ln3x^2 dx

$$\int\:\boldsymbol{{e}}^{\boldsymbol{{ax}}} \mathrm{cos}\:\boldsymbol{{bx}}\:\boldsymbol{{dx}} \\ $$$$\int\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{e}}^{\mathrm{2}\boldsymbol{{x}}} \boldsymbol{{ln}}\mathrm{3}\boldsymbol{{x}}^{\mathrm{2}} \:\boldsymbol{{dx}} \\ $$

Question Number 88858    Answers: 0   Comments: 0

Question Number 88852    Answers: 1   Comments: 0

prove that ∫_0 ^n ⌈x⌉dx= ((n(n+1))/2) and ∫_0 ^n ⌊x⌋dx=((n(n−1))/2) when ⌊..⌋ is floor and ⌈..⌉ is ceil

$${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{{n}} \lceil{x}\rceil{dx}=\:\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\:{and}\:\int_{\mathrm{0}} ^{{n}} \lfloor{x}\rfloor{dx}=\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}} \\ $$$${when}\:\lfloor..\rfloor\:{is}\:{floor}\:{and}\:\lceil..\rceil\:{is}\:{ceil} \\ $$

Question Number 88851    Answers: 0   Comments: 1

Question Number 88820    Answers: 2   Comments: 5

  Pg 1203      Pg 1204      Pg 1205      Pg 1206      Pg 1207      Pg 1208      Pg 1209      Pg 1210      Pg 1211      Pg 1212   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com