Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1206

Question Number 95202    Answers: 0   Comments: 4

Question Number 95342    Answers: 2   Comments: 0

determine the value of k such that the point A(4,−2,6) B(0,1,0) C(1,0,−5) and D(1,k,−2) lie on the same plane

$$\mathrm{determine}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{k}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\mathrm{the}\:\mathrm{point}\:\mathrm{A}\left(\mathrm{4},−\mathrm{2},\mathrm{6}\right)\:\mathrm{B}\left(\mathrm{0},\mathrm{1},\mathrm{0}\right)\:\mathrm{C}\left(\mathrm{1},\mathrm{0},−\mathrm{5}\right) \\ $$$$\mathrm{and}\:\mathrm{D}\left(\mathrm{1},\mathrm{k},−\mathrm{2}\right)\:\mathrm{lie}\:\mathrm{on}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{plane}\: \\ $$

Question Number 95341    Answers: 0   Comments: 0

Q) A light falls on two slits 0.15 mm apart.An interference pattern is produced on a screen 60 cm from the slits, if the distance between the second and the fifth bright bands (frings) is 0.7 cm. Calculate the avelength of the used light. solution: Δy_(n=2→n=5) =0.7⇒Δy=0.7/3=0.233×10^(−2) m Δy=((sλ)/d) ⇒λ=((dΔy)/s)=((0.15×10^(−3) ×0.233×10^(−2) )/(60×10^(−2) )) =5.83×10^(−7) =583 nm

$$\left.\mathrm{Q}\right)\:\mathrm{A}\:\mathrm{light}\:\mathrm{falls}\:\mathrm{on}\:\mathrm{two}\:\mathrm{slits}\:\mathrm{0}.\mathrm{15}\:{mm}\:\mathrm{apart}.\mathrm{An}\:\mathrm{interference}\:\mathrm{pattern} \\ $$$$\mathrm{is}\:\mathrm{produced}\:\mathrm{on}\:\mathrm{a}\:\mathrm{screen}\:\mathrm{60}\:{cm}\:\mathrm{from}\:\mathrm{the}\:\mathrm{slits},\:\mathrm{if}\: \\ $$$$\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{the}\:\mathrm{second}\:\mathrm{and}\:\mathrm{the}\:\mathrm{fifth}\: \\ $$$$\mathrm{bright}\:\mathrm{bands}\:\left(\mathrm{frings}\right)\:\mathrm{is}\:\mathrm{0}.\mathrm{7}\:{cm}.\:\mathrm{Calculate}\:\mathrm{the}\: \\ $$$$\mathrm{avelength}\:\mathrm{of}\:\mathrm{the}\:\mathrm{used}\:\mathrm{light}. \\ $$$$\boldsymbol{{solution}}: \\ $$$$\Delta{y}_{{n}=\mathrm{2}\rightarrow\mathrm{n}=\mathrm{5}} =\mathrm{0}.\mathrm{7}\Rightarrow\Delta{y}=\mathrm{0}.\mathrm{7}/\mathrm{3}=\mathrm{0}.\mathrm{233}×\mathrm{10}^{−\mathrm{2}} \:{m} \\ $$$$\Delta{y}=\frac{{s}\lambda}{{d}}\:\Rightarrow\lambda=\frac{{d}\Delta{y}}{{s}}=\frac{\mathrm{0}.\mathrm{15}×\mathrm{10}^{−\mathrm{3}} ×\mathrm{0}.\mathrm{233}×\mathrm{10}^{−\mathrm{2}} }{\mathrm{60}×\mathrm{10}^{−\mathrm{2}} } \\ $$$$=\mathrm{5}.\mathrm{83}×\mathrm{10}^{−\mathrm{7}} =\mathrm{583}\:{nm} \\ $$

Question Number 95199    Answers: 1   Comments: 0

∫_(−π) ^π cosxln((1+x)/(1−x)) dx=?

$$\int_{−\pi} ^{\pi} {cosxln}\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\:{dx}=? \\ $$

Question Number 95198    Answers: 1   Comments: 0

∫(√((x+2)/(x−3)))dx=?

$$\int\sqrt{\frac{{x}+\mathrm{2}}{{x}−\mathrm{3}}}{dx}=? \\ $$

Question Number 95182    Answers: 1   Comments: 0

Question Number 95180    Answers: 0   Comments: 1

Question Number 95167    Answers: 0   Comments: 2

the first term in a geometric series is (((2x + 7))/(2x−5)) and the common ratio is (((2x−5))/(2x + 7)) find the set of values of x for which all the terms are possible.

$$\mathrm{the}\:\mathrm{first}\:\mathrm{term}\:\mathrm{in}\:\mathrm{a}\:\mathrm{geometric}\:\mathrm{series}\:\mathrm{is}\:\frac{\left(\mathrm{2}{x}\:+\:\mathrm{7}\right)}{\mathrm{2}{x}−\mathrm{5}}\:\mathrm{and}\:\mathrm{the}\:\mathrm{common}\:\mathrm{ratio}\:\mathrm{is} \\ $$$$\:\frac{\left(\mathrm{2}{x}−\mathrm{5}\right)}{\mathrm{2}{x}\:+\:\mathrm{7}}\:\mathrm{find}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:{x}\:\mathrm{for}\:\mathrm{which}\:\mathrm{all}\:\mathrm{the}\:\mathrm{terms}\:\mathrm{are}\:\mathrm{possible}. \\ $$

Question Number 95164    Answers: 0   Comments: 3

if a_k =tan (θ+((kπ)/n)), find ((Σ_(k=1) ^n a_k )/(Π_(k=1) ^n a_k ))=?

$${if}\:{a}_{{k}} =\mathrm{tan}\:\left(\theta+\frac{{k}\pi}{{n}}\right), \\ $$$${find}\:\frac{\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{k}} }{\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{a}_{{k}} }=? \\ $$

Question Number 95159    Answers: 1   Comments: 1

((8−x))^(1/(3 )) + (√x) = 2

$$\sqrt[{\mathrm{3}\:\:}]{\mathrm{8}−\mathrm{x}}\:+\:\sqrt{\mathrm{x}}\:=\:\mathrm{2}\: \\ $$

Question Number 95158    Answers: 0   Comments: 0

find the domain and range f(x)=⌊(1/(sin{x}))⌋

$${find}\:{the}\:{domain}\:{and}\:{range} \\ $$$${f}\left({x}\right)=\lfloor\frac{\mathrm{1}}{{sin}\left\{{x}\right\}}\rfloor \\ $$

Question Number 95150    Answers: 1   Comments: 0

how do you solve f(x) +2 f((1/(1−x))) = x for f ?

$$\mathrm{how}\:\mathrm{do}\:\mathrm{you}\:\mathrm{solve}\:\mathrm{f}\left(\mathrm{x}\right)\:+\mathrm{2}\:\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}}\right)\:=\:\mathrm{x}\: \\ $$$$\mathrm{for}\:\mathrm{f}\:?\: \\ $$

Question Number 95145    Answers: 1   Comments: 0

what is the sum of (1/(14)) + (1/(35)) +(1/(65)) + (1/(104)) + ... ?

$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{14}}\:+\:\frac{\mathrm{1}}{\mathrm{35}}\:+\frac{\mathrm{1}}{\mathrm{65}}\:+\:\frac{\mathrm{1}}{\mathrm{104}}\:+\:...\:? \\ $$

Question Number 95140    Answers: 0   Comments: 2

what is range of a function f(x)= ((x+1)/(√(x^2 −1)))

$$\mathrm{what}\:\mathrm{is}\:\mathrm{range}\:\mathrm{of}\:\mathrm{a}\:\mathrm{function}\: \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\mathrm{x}+\mathrm{1}}{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}}\: \\ $$

Question Number 95133    Answers: 1   Comments: 0

lim_(x→∞) (x^2 .e^( −2x) ) = ?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{x}^{\mathrm{2}} .\mathrm{e}^{\:−\mathrm{2x}} \right)\:=\:? \\ $$

Question Number 95132    Answers: 0   Comments: 0

dolve xy^(′′) +(1−x^2 )y^′ +3y =x e^(−2x)

$$\mathrm{dolve}\:\:\mathrm{xy}^{''} \:+\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\mathrm{y}^{'} \:+\mathrm{3y}\:=\mathrm{x}\:\mathrm{e}^{−\mathrm{2x}} \\ $$

Question Number 95127    Answers: 0   Comments: 1

Question Number 95121    Answers: 1   Comments: 1

Question Number 95119    Answers: 1   Comments: 0

Solve the differential equations:− ★.(x sin x+cos x)(d^2 y/dx^2 ) −x cos x(dy/dx) + y cos x=0.

$$\:\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equations}:− \\ $$$$\bigstar.\left(\mathrm{x}\:\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\right)\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:−\mathrm{x}\:\mathrm{cos}\:\mathrm{x}\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\:\mathrm{y}\:\mathrm{cos}\:\mathrm{x}=\mathrm{0}. \\ $$

Question Number 95115    Answers: 2   Comments: 0

∫ e^( x) (√(1+e^( 2x) )) dx = ?

$$\int\:\mathrm{e}^{\:{x}} \:\sqrt{\mathrm{1}+{e}^{\:\mathrm{2}{x}} }\:{dx}\:=\:?\: \\ $$

Question Number 95108    Answers: 1   Comments: 0

∣1−log _(((1/6))) (x)∣ +2 = ∣3 −log _(((1/6))) (3)∣

$$\mid\mathrm{1}−\mathrm{log}\:_{\left(\frac{\mathrm{1}}{\mathrm{6}}\right)} \left(\mathrm{x}\right)\mid\:+\mathrm{2}\:=\:\mid\mathrm{3}\:−\mathrm{log}\:_{\left(\frac{\mathrm{1}}{\mathrm{6}}\right)} \left(\mathrm{3}\right)\mid\: \\ $$

Question Number 95106    Answers: 2   Comments: 0

{ ((x+y+z = 7)),((x^2 +y^2 +z^2 = 49)),((x^3 +y^3 +z^3 = 7)) :} find x; y ; z

$$\begin{cases}{{x}+{y}+{z}\:=\:\mathrm{7}}\\{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:=\:\mathrm{49}}\\{{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} \:=\:\mathrm{7}}\end{cases} \\ $$$${find}\:{x};\:\mathrm{y}\:;\:{z}\: \\ $$

Question Number 95098    Answers: 2   Comments: 0

[ (y/(x^2 +y^2 )) + (x/(x^2 +y^2 )) ] dx + [(y/(x^2 +y^2 ))−(x/(x^2 +y^2 )) ]dy=0

$$\left[\:\frac{\mathrm{y}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\:+\:\frac{\mathrm{x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\:\right]\:\mathrm{dx}\:+\:\left[\frac{\mathrm{y}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }−\frac{\mathrm{x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\:\right]\mathrm{dy}=\mathrm{0} \\ $$

Question Number 95093    Answers: 2   Comments: 0

Solve: x^2 + y^2 = 13 ....... (i) 2x^2 + 3y = 2xy^2 ....... (ii)

$$\mathrm{Solve}: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{y}^{\mathrm{2}} \:\:=\:\:\mathrm{13}\:\:\:\:\:\:\:\:\:\:.......\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\mathrm{2x}^{\mathrm{2}} \:\:+\:\:\mathrm{3y}\:\:=\:\:\mathrm{2xy}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:.......\:\left(\mathrm{ii}\right) \\ $$

Question Number 95068    Answers: 1   Comments: 3

Solve the differential equations−: 1. (dy/dx) = sin(x+y)+ cos(x+y)

$$\:\:\:\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equations}−: \\ $$$$\:\:\:\mathrm{1}.\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{sin}\left(\mathrm{x}+\mathrm{y}\right)+\:\mathrm{cos}\left(\mathrm{x}+\mathrm{y}\right) \\ $$$$\: \\ $$

Question Number 95062    Answers: 0   Comments: 7

solve for x, y, z ∈C such that ∣x∣=∣y∣=∣z∣=1 x+y+z=1 xyz=1

$${solve}\:{for}\:{x},\:{y},\:{z}\:\in\mathbb{C}\:{such}\:{that} \\ $$$$\mid{x}\mid=\mid{y}\mid=\mid{z}\mid=\mathrm{1} \\ $$$${x}+{y}+{z}=\mathrm{1} \\ $$$${xyz}=\mathrm{1} \\ $$

  Pg 1201      Pg 1202      Pg 1203      Pg 1204      Pg 1205      Pg 1206      Pg 1207      Pg 1208      Pg 1209      Pg 1210   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com