Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1205

Question Number 87911    Answers: 0   Comments: 3

Question Number 87910    Answers: 0   Comments: 0

$$ \\ $$

Question Number 87905    Answers: 1   Comments: 1

y′ = 2^y

$$\mathrm{y}'\:=\:\mathrm{2}^{\mathrm{y}} \\ $$

Question Number 87904    Answers: 2   Comments: 2

y ′′ −3y′ +2y = 10sin x + 2cos 2x

$$\mathrm{y}\:''\:−\mathrm{3y}'\:+\mathrm{2y}\:=\:\mathrm{10sin}\:\mathrm{x}\:+\:\mathrm{2cos}\:\mathrm{2x} \\ $$

Question Number 87903    Answers: 0   Comments: 0

find ∫_0 ^∞ ∫_0 ^∞ ((arctan(xy))/((x+y)^2 ))dxdy

$${find}\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({xy}\right)}{\left({x}+{y}\right)^{\mathrm{2}} }{dxdy} \\ $$

Question Number 87902    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ∫_0 ^∞ (e^(−(x^2 +y^2 )) /((x+y)^2 ))dxdy

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{{e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} }{\left({x}+{y}\right)^{\mathrm{2}} }{dxdy} \\ $$

Question Number 87901    Answers: 0   Comments: 0

calculate ∫∫_([0,1]^2 ) ((arctan(x+y))/(x+y))dxdy

$${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\frac{{arctan}\left({x}+{y}\right)}{{x}+{y}}{dxdy} \\ $$

Question Number 87893    Answers: 1   Comments: 0

∫ (√((sin x)/(sin x−cos x))) dx

$$\int\:\sqrt{\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}}}\:\:\mathrm{dx}\: \\ $$

Question Number 87886    Answers: 1   Comments: 2

Question Number 87884    Answers: 1   Comments: 0

Question Number 87881    Answers: 1   Comments: 1

∫_(−∞) ^( +∞) (1/x) dx =

$$\:\int_{−\infty} ^{\:+\infty} \frac{\mathrm{1}}{{x}}\:{dx}\:=\: \\ $$

Question Number 87878    Answers: 1   Comments: 0

posons (1+2(√3))^n =a_n +b_n (√3) montre que pgcd(a_n ;b_n )=1

$${posons}\: \\ $$$$\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{3}}\right)^{\boldsymbol{{n}}} =\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} +\boldsymbol{\mathrm{b}}_{\boldsymbol{\mathrm{n}}} \sqrt{\mathrm{3}} \\ $$$$\boldsymbol{\mathrm{montre}}\:\boldsymbol{\mathrm{que}}\:\boldsymbol{\mathrm{pgcd}}\left(\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} ;\boldsymbol{{b}}_{\boldsymbol{{n}}} \right)=\mathrm{1} \\ $$

Question Number 87877    Answers: 0   Comments: 0

posons (1+2(√3))^n =a_n +b_n (√3) montre que pgcd(a_n ;b_n )=1

$${posons}\: \\ $$$$\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{3}}\right)^{\boldsymbol{{n}}} =\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} +\boldsymbol{\mathrm{b}}_{\boldsymbol{\mathrm{n}}} \sqrt{\mathrm{3}} \\ $$$$\boldsymbol{\mathrm{montre}}\:\boldsymbol{\mathrm{que}}\:\boldsymbol{\mathrm{pgcd}}\left(\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} ;\boldsymbol{{b}}_{\boldsymbol{{n}}} \right)=\mathrm{1} \\ $$

Question Number 87876    Answers: 0   Comments: 1

prove that Γ(z)=∫_0 ^∞ e^(−x) x^(z−1) dx,Re(z)>0

$${prove}\:{that} \\ $$$$\Gamma\left({z}\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} \:{x}^{{z}−\mathrm{1}} \:{dx},{Re}\left({z}\right)>\mathrm{0} \\ $$

Question Number 87870    Answers: 0   Comments: 0

x amd y are imtegers. how many possible solitions do the eqiation has x^2 −10y^2 = ±1

$$\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{amd}}\:\boldsymbol{\mathrm{y}}\:\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{imtegers}}. \\ $$$$\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{many}}\:\boldsymbol{\mathrm{possible}}\:\boldsymbol{\mathrm{solitions}}\:\boldsymbol{\mathrm{do}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{eqiation}}\:\boldsymbol{\mathrm{has}} \\ $$$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{10}\boldsymbol{\mathrm{y}}^{\mathrm{2}} \:=\:\pm\mathrm{1} \\ $$

Question Number 87862    Answers: 0   Comments: 3

Evaluate ∫_(−1) ^1 (1/(x−1)) dx

$$\mathrm{Evaluate}\:\:\:\:\overset{\mathrm{1}} {\int}_{−\mathrm{1}} \frac{\mathrm{1}}{{x}−\mathrm{1}}\:{dx}\: \\ $$

Question Number 87861    Answers: 0   Comments: 4

∫_0 ^(π/4) tanh 2x dx

$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\:\mathrm{tanh}\:\mathrm{2}{x}\:{dx} \\ $$

Question Number 87860    Answers: 0   Comments: 3

Question Number 87843    Answers: 0   Comments: 2

Question Number 87839    Answers: 1   Comments: 0

I = ∫_0 ^(π/4) ((sin 4x)/(cos^2 x (√(tan^4 x+1)))) dx

$$\mathrm{I}\:=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\:\frac{\mathrm{sin}\:\mathrm{4x}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\:\sqrt{\mathrm{tan}\:^{\mathrm{4}} \mathrm{x}+\mathrm{1}}}\:\mathrm{dx} \\ $$

Question Number 87833    Answers: 1   Comments: 5

1)find ∫2^(ln(x)) dx 2)prove (i)^(1/i) = resl number

$$\left.\mathrm{1}\right){find}\:\int\mathrm{2}^{{ln}\left({x}\right)} \:{dx} \\ $$$$\left.\mathrm{2}\right){prove}\:\sqrt[{{i}}]{{i}}\:=\:{resl}\:{number} \\ $$

Question Number 87831    Answers: 1   Comments: 1

Question Number 87817    Answers: 1   Comments: 3

f(((x−3)/(x+1)))+f(((x+3)/(x−1)))=x find f(x)

$${f}\left(\frac{{x}−\mathrm{3}}{{x}+\mathrm{1}}\right)+{f}\left(\frac{{x}+\mathrm{3}}{{x}−\mathrm{1}}\right)={x} \\ $$$${find}\:{f}\left({x}\right) \\ $$

Question Number 87815    Answers: 1   Comments: 3

I = ∫_0 ^(π/2) cos 2x(cos^4 x+sin^4 x) dx

$$\mathrm{I}\:=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\mathrm{cos}\:\mathrm{2x}\left(\mathrm{cos}\:^{\mathrm{4}} \mathrm{x}+\mathrm{sin}\:^{\mathrm{4}} \mathrm{x}\right)\:\mathrm{dx} \\ $$

Question Number 87803    Answers: 2   Comments: 4

Question Number 87799    Answers: 0   Comments: 2

f(x)= { ((ax^2 +bx −1≤x≤0)),((cx^2 +d 0<x≤(1/2))),((bx+d (1/2)<x≤1)) :} f(x) is continuous on[−1,1] prove d=0 c=2b

$${f}\left({x}\right)=\begin{cases}{{ax}^{\mathrm{2}} +{bx}\:\:\:\:\:\:−\mathrm{1}\leqslant{x}\leqslant\mathrm{0}}\\{{cx}^{\mathrm{2}} +{d}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}<{x}\leqslant\frac{\mathrm{1}}{\mathrm{2}}}\\{{bx}+{d}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}<{x}\leqslant\mathrm{1}}\end{cases} \\ $$$${f}\left({x}\right)\:{is}\:{continuous}\:{on}\left[−\mathrm{1},\mathrm{1}\right] \\ $$$${prove}\:{d}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{c}=\mathrm{2}{b} \\ $$

  Pg 1200      Pg 1201      Pg 1202      Pg 1203      Pg 1204      Pg 1205      Pg 1206      Pg 1207      Pg 1208      Pg 1209   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com