Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1205
Question Number 87902 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{{e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} }{\left({x}+{y}\right)^{\mathrm{2}} }{dxdy} \\ $$
Question Number 87901 Answers: 0 Comments: 0
$${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\frac{{arctan}\left({x}+{y}\right)}{{x}+{y}}{dxdy} \\ $$
Question Number 87893 Answers: 1 Comments: 0
$$\int\:\sqrt{\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}}}\:\:\mathrm{dx}\: \\ $$
Question Number 87886 Answers: 1 Comments: 2
Question Number 87884 Answers: 1 Comments: 0
Question Number 87881 Answers: 1 Comments: 1
$$\:\int_{−\infty} ^{\:+\infty} \frac{\mathrm{1}}{{x}}\:{dx}\:=\: \\ $$
Question Number 87878 Answers: 1 Comments: 0
$${posons}\: \\ $$$$\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{3}}\right)^{\boldsymbol{{n}}} =\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} +\boldsymbol{\mathrm{b}}_{\boldsymbol{\mathrm{n}}} \sqrt{\mathrm{3}} \\ $$$$\boldsymbol{\mathrm{montre}}\:\boldsymbol{\mathrm{que}}\:\boldsymbol{\mathrm{pgcd}}\left(\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} ;\boldsymbol{{b}}_{\boldsymbol{{n}}} \right)=\mathrm{1} \\ $$
Question Number 87877 Answers: 0 Comments: 0
Question Number 87876 Answers: 0 Comments: 1
$${prove}\:{that} \\ $$$$\Gamma\left({z}\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} \:{x}^{{z}−\mathrm{1}} \:{dx},{Re}\left({z}\right)>\mathrm{0} \\ $$
Question Number 87870 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{amd}}\:\boldsymbol{\mathrm{y}}\:\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{imtegers}}. \\ $$$$\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{many}}\:\boldsymbol{\mathrm{possible}}\:\boldsymbol{\mathrm{solitions}}\:\boldsymbol{\mathrm{do}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{eqiation}}\:\boldsymbol{\mathrm{has}} \\ $$$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{10}\boldsymbol{\mathrm{y}}^{\mathrm{2}} \:=\:\pm\mathrm{1} \\ $$
Question Number 87862 Answers: 0 Comments: 3
$$\mathrm{Evaluate}\:\:\:\:\overset{\mathrm{1}} {\int}_{−\mathrm{1}} \frac{\mathrm{1}}{{x}−\mathrm{1}}\:{dx}\: \\ $$
Question Number 87861 Answers: 0 Comments: 4
$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\:\mathrm{tanh}\:\mathrm{2}{x}\:{dx} \\ $$
Question Number 87860 Answers: 0 Comments: 3
Question Number 87843 Answers: 0 Comments: 2
Question Number 87839 Answers: 1 Comments: 0
$$\mathrm{I}\:=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\:\frac{\mathrm{sin}\:\mathrm{4x}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\:\sqrt{\mathrm{tan}\:^{\mathrm{4}} \mathrm{x}+\mathrm{1}}}\:\mathrm{dx} \\ $$
Question Number 87833 Answers: 1 Comments: 5
$$\left.\mathrm{1}\right){find}\:\int\mathrm{2}^{{ln}\left({x}\right)} \:{dx} \\ $$$$\left.\mathrm{2}\right){prove}\:\sqrt[{{i}}]{{i}}\:=\:{resl}\:{number} \\ $$
Question Number 87831 Answers: 1 Comments: 1
Question Number 87817 Answers: 1 Comments: 3
$${f}\left(\frac{{x}−\mathrm{3}}{{x}+\mathrm{1}}\right)+{f}\left(\frac{{x}+\mathrm{3}}{{x}−\mathrm{1}}\right)={x} \\ $$$${find}\:{f}\left({x}\right) \\ $$
Question Number 87815 Answers: 1 Comments: 3
$$\mathrm{I}\:=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\mathrm{cos}\:\mathrm{2x}\left(\mathrm{cos}\:^{\mathrm{4}} \mathrm{x}+\mathrm{sin}\:^{\mathrm{4}} \mathrm{x}\right)\:\mathrm{dx} \\ $$
Question Number 87803 Answers: 2 Comments: 4
Question Number 87799 Answers: 0 Comments: 2
$${f}\left({x}\right)=\begin{cases}{{ax}^{\mathrm{2}} +{bx}\:\:\:\:\:\:−\mathrm{1}\leqslant{x}\leqslant\mathrm{0}}\\{{cx}^{\mathrm{2}} +{d}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}<{x}\leqslant\frac{\mathrm{1}}{\mathrm{2}}}\\{{bx}+{d}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}<{x}\leqslant\mathrm{1}}\end{cases} \\ $$$${f}\left({x}\right)\:{is}\:{continuous}\:{on}\left[−\mathrm{1},\mathrm{1}\right] \\ $$$${prove}\:{d}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{c}=\mathrm{2}{b} \\ $$
Question Number 87793 Answers: 2 Comments: 0
$${show}\:{that} \\ $$$$\int{e}^{{sin}\left({x}\right)} \:{dx}= \\ $$$$−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\left[\:{cos}\left({x}\right)\ast\left({sin}\left({x}\right)\right)^{{n}+\mathrm{1}} \ast\left[\left({sin}\left({x}\right)\right)^{\mathrm{2}} \right]^{\left(\frac{−{n}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\right)} \ast\:\mathrm{2}{F}_{\mathrm{1}} \left[\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}−{n}}{\mathrm{2}};\frac{\mathrm{3}}{\mathrm{2}};\left({cos}\left({x}\right)\right)^{\mathrm{2}} \right]\:\right]+{c} \\ $$$$ \\ $$$${notice}\backslash\mathrm{2}{F}_{\mathrm{1}} \:{is}\:{special}\:{function}\:{called}\:{hypergeometric}\:{function} \\ $$
Question Number 87790 Answers: 2 Comments: 0
$$\mathrm{How}\:\mathrm{many}\:\mathrm{handshakes}\:\mathrm{are}\:\mathrm{exchanged} \\ $$$$\mathrm{betwen}\:\mathrm{27}\:\mathrm{boys}? \\ $$
Question Number 87789 Answers: 1 Comments: 1
$$\left(\mathrm{D}^{\mathrm{3}} −\mathrm{D}^{\mathrm{2}} \right)\mathrm{y}\:=\:\mathrm{x}^{\mathrm{2}} +\mathrm{1}\:,\mathrm{y}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\mathrm{y}\:'\left(\mathrm{0}\right)=−\mathrm{1}\:,\mathrm{y}\:''\left(\mathrm{0}\right)\:=\:\mathrm{0} \\ $$
Question Number 87785 Answers: 0 Comments: 0
Question Number 87784 Answers: 1 Comments: 1
$$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)\:=\:\mathrm{y}\:\mathrm{f}\left(\mathrm{y},\mathrm{x}\right)\:+\mathrm{x} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{1},\mathrm{2}\right)\:. \\ $$
Pg 1200 Pg 1201 Pg 1202 Pg 1203 Pg 1204 Pg 1205 Pg 1206 Pg 1207 Pg 1208 Pg 1209
Terms of Service
Privacy Policy
Contact: info@tinkutara.com