Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1204
Question Number 84871 Answers: 1 Comments: 1
$$\mathrm{If}\:\mathrm{you}\:\mathrm{know} \\ $$$$\left(\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{bc}}\right)^{\mathrm{2}} +\left(\frac{{c}^{\mathrm{2}} +{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{ca}}\right)^{\mathrm{2}} +\left(\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{ab}}\right)^{\mathrm{2}} =\mathrm{3}, \\ $$$$\mathrm{then}\:\mathrm{what}'\mathrm{s}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{bc}}+\frac{{c}^{\mathrm{2}} +{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{ac}}+\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{ab}}? \\ $$
Question Number 84868 Answers: 1 Comments: 0
$$\sqrt{\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \left(\frac{\mathrm{3}\pi}{\mathrm{2}}−\mathrm{x}\right)}\:=\:−\mathrm{cos}\:\mathrm{x}+\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{sin}\:\left(\mathrm{x}−\pi\right) \\ $$
Question Number 84862 Answers: 2 Comments: 1
$$\underset{\:\mathrm{0}} {\overset{\mathrm{100}} {\int}}\:\left[\mathrm{tan}^{−\mathrm{1}} {x}\right]{dx}\:=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\boldsymbol{{Jakir}}\:\boldsymbol{{Sarif}}\:\:\boldsymbol{{Mondal}}. \\ $$$$\:\:\:\:\:\:\: \\ $$
Question Number 84859 Answers: 0 Comments: 0
$${show}\:{that} \\ $$$$\underset{{n}\rightarrow\infty} {{lim}}\int_{\mathrm{0}} ^{\mathrm{1}} ...\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{n}}{{x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} +...+{x}_{{n}} }{dx}_{\mathrm{1}} {dx}_{\mathrm{2}} ...{dx}_{{n}} =\mathrm{2}\: \\ $$
Question Number 84849 Answers: 0 Comments: 5
$${ABC}\:{is}\:{a}\:{triangle}\: \\ $$$${prove}\:{that} \\ $$$${sinA}+{sinB}+{sinC}>{sinA}\:{sinB}\:{sinC} \\ $$
Question Number 84845 Answers: 1 Comments: 1
Question Number 84843 Answers: 0 Comments: 2
$$\int\frac{{sin}\left(\mathrm{7}{x}\right)}{{cos}\left(\mathrm{3}{x}\right)}\:{dx} \\ $$
Question Number 84835 Answers: 0 Comments: 1
Question Number 84834 Answers: 1 Comments: 1
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}\:\mathrm{tan}\:\mathrm{x}}}{\mathrm{sin}\:\mathrm{3x}} \\ $$
Question Number 84830 Answers: 1 Comments: 0
$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{1}−\mathrm{x}−\mathrm{y}}{\mathrm{x}+\mathrm{y}} \\ $$
Question Number 84828 Answers: 0 Comments: 1
$$\mathrm{log}_{\mathrm{3}} \left(\mathrm{25x}^{\mathrm{2}} −\mathrm{4}\right)−\mathrm{log}_{\mathrm{3}} \left(\mathrm{x}\right)\:\leqslant\:\mathrm{log}_{\mathrm{3}} \left(\mathrm{26x}^{\mathrm{2}} +\frac{\mathrm{17}}{\mathrm{x}}−\mathrm{10}\right) \\ $$
Question Number 84826 Answers: 0 Comments: 1
$$\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{2}}\:+\:\mathrm{log}_{\mathrm{3}} \:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{10}}\:=\:\mathrm{2} \\ $$
Question Number 84820 Answers: 1 Comments: 0
Question Number 84814 Answers: 0 Comments: 1
$$\mathrm{1}.{Finx} \\ $$
Question Number 84810 Answers: 0 Comments: 1
$$\int_{\mathrm{0}} ^{\pi} {ln}\left(\frac{\mathrm{1}+{b}\:{cos}\left({x}\right)}{\mathrm{1}+{a}\:{sin}\left({x}\right)}\right)\:{dx} \\ $$$$−\mathrm{1}<{a}<{b}<\mathrm{1} \\ $$
Question Number 84809 Answers: 1 Comments: 1
$$\int\frac{{x}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} {arctan}\left({x}\right)}\:{dx} \\ $$
Question Number 84861 Answers: 0 Comments: 1
$$\mathrm{If}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{an}\:\mathrm{even}\:\mathrm{function},\:\mathrm{then} \\ $$$$\underset{\:\mathrm{0}} {\overset{\pi} {\int}}\:{f}\:\left(\mathrm{cos}\:{x}\right)\:{dx}\:=\:\mathrm{2}\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:{f}\:\left(\mathrm{cos}\:{x}\right)\:{dx} \\ $$
Question Number 84792 Answers: 0 Comments: 0
$${a},{b},{c}\geqslant\mathrm{0} \\ $$$${a}+{b}+{c}=\mathrm{3} \\ $$$${show}\:{that} \\ $$$$\sqrt[{\mathrm{3}}]{{a}}\:+\sqrt[{\mathrm{3}}]{{b}}\:+\sqrt[{\mathrm{3}}]{{c}}\geqslant{ab}+{bc}+{ca} \\ $$
Question Number 84783 Answers: 1 Comments: 6
Question Number 84782 Answers: 1 Comments: 8
$${Find}\:{the}\:{last}\:{three}\:{digits}\:{of}\:\mathrm{2019}^{\mathrm{2019}} . \\ $$
Question Number 84778 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}+{sinx}} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$
Question Number 84770 Answers: 2 Comments: 1
$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{30}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{y}}\:=\:\mathrm{2}\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{x}\:\&\:\mathrm{y}\:? \\ $$
Question Number 84767 Answers: 1 Comments: 0
$${Find}\:\:{all}\:\:{solutions}\:\:{of} \\ $$$$\:\:\:\:\:\:\:\mathrm{2020}{x}^{\mathrm{2}} \:−\:{y}^{\mathrm{2}} \:\:=\:\:\mathrm{6059} \\ $$$${x},\:{y}\:<\:\:\mathrm{2020}\:\:,\:\:\:{x},\:{y}\:\:\in\:\:\mathbb{N} \\ $$
Question Number 84766 Answers: 1 Comments: 2
$$\int\:\frac{\mathrm{dx}}{\left(\mathrm{16}+\mathrm{9sin}\:\mathrm{x}\right)^{\mathrm{2}} } \\ $$$$ \\ $$
Question Number 84759 Answers: 1 Comments: 0
$${calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\frac{{arctan}\left(\mathrm{2}{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 84740 Answers: 1 Comments: 5
$$\mathrm{find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when}\:−\mathrm{18}\:\mathrm{is}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{4} \\ $$
Pg 1199 Pg 1200 Pg 1201 Pg 1202 Pg 1203 Pg 1204 Pg 1205 Pg 1206 Pg 1207 Pg 1208
Terms of Service
Privacy Policy
Contact: info@tinkutara.com