Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1204

Question Number 94931    Answers: 1   Comments: 0

f is a 2(×) derivable function and L laplace transfom determine L(f^′ ) a L(f^(′′) )

$$\mathrm{f}\:\mathrm{is}\:\mathrm{a}\:\mathrm{2}\left(×\right)\:\mathrm{derivable}\:\mathrm{function}\:\:\mathrm{and}\:\mathrm{L}\:\mathrm{laplace}\:\mathrm{transfom} \\ $$$$\mathrm{determine}\:\mathrm{L}\left(\mathrm{f}^{'} \right)\:\mathrm{a}\:\mathrm{L}\left(\mathrm{f}^{''} \right) \\ $$

Question Number 94925    Answers: 1   Comments: 2

Question Number 94923    Answers: 1   Comments: 0

Question Number 94922    Answers: 1   Comments: 0

Question Number 94921    Answers: 2   Comments: 0

Question Number 94915    Answers: 2   Comments: 0

We suppose in R^2 the base (i^→ ;j^→ ). we have these vectors: u^→ =(m^2 −m)i^→ +2mj^→ ; v^→ =(m−1)i^→ +(m+1)j^→ m ∈ R^∗ 1)Determinate m for which the system (u^→ ;v^→ ) is linear dependant( det(u^→ ;v^→ )=0)

$$\mathrm{We}\:\mathrm{suppose}\:\mathrm{in}\:\mathbb{R}^{\mathrm{2}} \:\mathrm{the}\:\mathrm{base}\:\left(\overset{\rightarrow} {{i}};\overset{\rightarrow} {{j}}\right). \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{these}\:\mathrm{vectors}: \\ $$$$\overset{\rightarrow} {\mathrm{u}}=\left(\mathrm{m}^{\mathrm{2}} −\mathrm{m}\right)\overset{\rightarrow} {{i}}+\mathrm{2m}\overset{\rightarrow} {{j}}\:;\: \\ $$$$\overset{\rightarrow} {\mathrm{v}}=\left(\mathrm{m}−\mathrm{1}\right)\overset{\rightarrow} {{i}}+\left(\mathrm{m}+\mathrm{1}\right)\overset{\rightarrow} {{j}}\:\mathrm{m}\:\in\:\mathbb{R}^{\ast} \\ $$$$\left.\mathrm{1}\right)\mathrm{Determinate}\:\mathrm{m}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\:\mathrm{system} \\ $$$$\left(\overset{\rightarrow} {\mathrm{u}};\overset{\rightarrow} {\mathrm{v}}\right)\:\mathrm{is}\:\mathrm{linear}\:\mathrm{dependant}\left(\:\mathrm{det}\left(\overset{\rightarrow} {\mathrm{u}};\overset{\rightarrow} {\mathrm{v}}\right)=\mathrm{0}\right) \\ $$$$ \\ $$

Question Number 94914    Answers: 1   Comments: 0

Question Number 94910    Answers: 1   Comments: 0

Solve in [0;2π] 2sin(4x−(π/6))≥1 Please sirs...

$$\mathrm{Solve}\:\mathrm{in}\:\left[\mathrm{0};\mathrm{2}\pi\right] \\ $$$$\mathrm{2sin}\left(\mathrm{4}{x}−\frac{\pi}{\mathrm{6}}\right)\geqslant\mathrm{1} \\ $$$$\mathrm{Please}\:\mathrm{sirs}... \\ $$

Question Number 94907    Answers: 2   Comments: 0

1)calculate ∫ (dx/((2+(√(x−1)))^2 )) 2) find the value of ∫_2 ^(+∞) (dx/((2+(√(x−1)))^2 ))

$$\left.\mathrm{1}\right)\mathrm{calculate}\:\int\:\:\frac{\mathrm{dx}}{\left(\mathrm{2}+\sqrt{\mathrm{x}−\mathrm{1}}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\int_{\mathrm{2}} ^{+\infty} \:\:\:\frac{\mathrm{dx}}{\left(\mathrm{2}+\sqrt{\mathrm{x}−\mathrm{1}}\right)^{\mathrm{2}} } \\ $$

Question Number 94906    Answers: 2   Comments: 0

calculate ∫_1 ^(+∞) (dx/(x^2 (x+1)^3 (x+2)^4 ))

$$\mathrm{calculate}\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{4}} } \\ $$

Question Number 94905    Answers: 2   Comments: 0

calculate ∫_3 ^(+∞) ((xdx)/((x+1)^3 (x−2)^2 ))

$$\mathrm{calculate}\:\:\int_{\mathrm{3}} ^{+\infty} \:\:\:\:\:\frac{\mathrm{xdx}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} } \\ $$

Question Number 94904    Answers: 0   Comments: 0

solve y^(′′) +x^2 y =xsin(2x)

$$\mathrm{solve}\:\mathrm{y}^{''} \:+\mathrm{x}^{\mathrm{2}} \mathrm{y}\:=\mathrm{xsin}\left(\mathrm{2x}\right) \\ $$

Question Number 94903    Answers: 2   Comments: 0

solve y^(′′) +2y^′ +y =xe^(−x)

$$\mathrm{solve}\:\:\mathrm{y}^{''} \:+\mathrm{2y}^{'} \:+\mathrm{y}\:=\mathrm{xe}^{−\mathrm{x}} \\ $$

Question Number 94882    Answers: 1   Comments: 0

solve the equation tan θ+tan 2θ+tan 3θ = tan θ.tan 2θ.tan 3θ

$$\mathrm{solve}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\mathrm{tan}\:\theta+\mathrm{tan}\:\mathrm{2}\theta+\mathrm{tan}\:\mathrm{3}\theta\:=\: \\ $$$$\mathrm{tan}\:\theta.\mathrm{tan}\:\mathrm{2}\theta.\mathrm{tan}\:\mathrm{3}\theta\: \\ $$

Question Number 94948    Answers: 1   Comments: 3

∫_0 ^((√(2 ln (3))) ) xe^(x^2 /2) dx = . . .

$$\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}\:{ln}\:\left(\mathrm{3}\right)}\:} {xe}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} \:{dx}\:=\:.\:.\:. \\ $$

Question Number 94877    Answers: 1   Comments: 2

Solve for x in [0;2π]: sin(4x−(π/6))=(1/2)

$$\mathrm{Solve}\:\mathrm{for}\:{x}\:\mathrm{in}\:\left[\mathrm{0};\mathrm{2}\pi\right]: \\ $$$$\mathrm{sin}\left(\mathrm{4}{x}−\frac{\pi}{\mathrm{6}}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Question Number 94874    Answers: 1   Comments: 1

Question Number 94868    Answers: 0   Comments: 5

Question Number 94862    Answers: 0   Comments: 4

Show that cos^6 x+sin^6 x=(1/8)(5+3cos(4x)) By using the formula: a^3 +b^3 =(a+b)(a^2 −ab+b^2 )

$$\mathrm{Show}\:\mathrm{that}\: \\ $$$$\mathrm{cos}^{\mathrm{6}} {x}+{sin}^{\mathrm{6}} {x}=\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{5}+\mathrm{3}{cos}\left(\mathrm{4}{x}\right)\right) \\ $$$$\mathrm{By}\:\mathrm{using}\:\mathrm{the}\:\mathrm{formula}: \\ $$$$\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} =\left(\mathrm{a}+\mathrm{b}\right)\left(\mathrm{a}^{\mathrm{2}} −\mathrm{ab}+\mathrm{b}^{\mathrm{2}} \right) \\ $$

Question Number 94861    Answers: 0   Comments: 1

Show that (g○f)′(x)=g′(f(x))∙f′(x)

$$\mathrm{Show}\:\mathrm{that} \\ $$$$\left(\mathrm{g}\circ\mathrm{f}\right)'\left(\mathrm{x}\right)=\mathrm{g}'\left(\mathrm{f}\left(\mathrm{x}\right)\right)\centerdot\mathrm{f}'\left(\mathrm{x}\right) \\ $$

Question Number 94857    Answers: 2   Comments: 7

Question Number 94855    Answers: 1   Comments: 0

Solve for x in R x(√(x+3))−4(√(x+3))+2x−8=0

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\:\mathrm{in}\:\mathbb{R} \\ $$$${x}\sqrt{{x}+\mathrm{3}}−\mathrm{4}\sqrt{{x}+\mathrm{3}}+\mathrm{2}{x}−\mathrm{8}=\mathrm{0} \\ $$

Question Number 94849    Answers: 1   Comments: 0

Calculate limits of f at +∞; −1 and 1 f(x)=2x+3−(x/(1−x^2 ))

$$\mathrm{Calculate}\:\mathrm{limits}\:\mathrm{of}\:{f}\:\mathrm{at}\:+\infty;\:−\mathrm{1}\:\mathrm{and}\:\mathrm{1} \\ $$$${f}\left({x}\right)=\mathrm{2}{x}+\mathrm{3}−\frac{{x}}{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$

Question Number 94847    Answers: 2   Comments: 0

Question Number 94835    Answers: 0   Comments: 0

proof or disproof that if a quotient group (G/H) is abelian then G must be abelian.

$$\mathrm{proof}\:\mathrm{or}\:\mathrm{disproof}\:\mathrm{that}\:\mathrm{if}\:\mathrm{a}\:\mathrm{quotient} \\ $$$$\mathrm{group}\:\frac{\mathrm{G}}{\mathrm{H}}\:\mathrm{is}\:\mathrm{abelian}\:\mathrm{then}\:\mathrm{G}\:\mathrm{must}\:\mathrm{be}\:\mathrm{abelian}. \\ $$

Question Number 94820    Answers: 1   Comments: 0

A train which travels at a uniform speed due to mechanical fault after traveling for an hour goes at 3/5 th of the original speed and reaches the destination 2 hours late. If the fault occured after traveling another 50 miles the train would have reached 40 minutes earlier. What is the distance between the two stations ?

$${A}\:{train}\:{which}\:{travels}\:{at}\:{a}\:{uniform}\:{speed}\:{due}\:{to}\:{mechanical}\:{fault}\:{after}\: \\ $$$${traveling}\:{for}\:{an}\:{hour}\:{goes}\:{at}\:\mathrm{3}/\mathrm{5}\:{th}\:{of}\:{the}\:{original}\:{speed}\:{and}\:{reaches}\:{the}\: \\ $$$${destination}\:\mathrm{2}\:{hours}\:{late}.\:{If}\:{the}\:{fault}\:{occured}\:{after}\:{traveling}\:{another}\:\mathrm{50} \\ $$$${miles}\:{the}\:{train}\:{would}\:{have}\:{reached}\:\mathrm{40}\:{minutes}\:{earlier}.\:{What}\:{is}\:{the}\: \\ $$$${distance}\:{between}\:{the}\:{two}\:{stations}\:? \\ $$

  Pg 1199      Pg 1200      Pg 1201      Pg 1202      Pg 1203      Pg 1204      Pg 1205      Pg 1206      Pg 1207      Pg 1208   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com