Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1203
Question Number 88098 Answers: 0 Comments: 2
$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\left(\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{\mathrm{sin}\:{x}}\right) \\ $$
Question Number 88097 Answers: 1 Comments: 0
$$\int\frac{\mathrm{dx}}{\left(\mathrm{2x}−\mathrm{3}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} } \\ $$
Question Number 88092 Answers: 2 Comments: 3
Question Number 88089 Answers: 1 Comments: 1
$$\int\frac{{e}^{{x}} }{{e}^{\mathrm{2}} −\mathrm{9}}{dx} \\ $$
Question Number 88088 Answers: 0 Comments: 0
Question Number 88071 Answers: 1 Comments: 7
Question Number 88069 Answers: 1 Comments: 2
Question Number 88068 Answers: 2 Comments: 3
Question Number 88067 Answers: 1 Comments: 0
Question Number 88065 Answers: 0 Comments: 3
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{{n}}\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\:\mathrm{cos}\:^{\mathrm{2}} \left(\frac{\pi{i}}{{n}}\right) \\ $$
Question Number 88064 Answers: 1 Comments: 0
$$\int\:\frac{\mathrm{dx}}{\mathrm{cos}\:\mathrm{x}\left(\mathrm{2}+\mathrm{sin}\:\mathrm{x}\right)}? \\ $$
Question Number 88050 Answers: 1 Comments: 6
Question Number 88045 Answers: 0 Comments: 2
$$\int\:\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{2sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}\:\mathrm{dx}\: \\ $$
Question Number 88042 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{max}\:\mathrm{and}\:\mathrm{min}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{5}}{−\mathrm{3cos}\:\mathrm{x}−\mathrm{4sin}\:\mathrm{x}} \\ $$
Question Number 88041 Answers: 1 Comments: 0
Question Number 88040 Answers: 0 Comments: 2
$${Find}\:{the}\:{max}\:{and}\:{min} \\ $$$${of}\:{function} \\ $$$$\frac{{a}+{b}\mathrm{sin}\:{x}}{{b}+{a}\mathrm{sin}\:{x}} \\ $$$${where}\:{b}>{a}>\mathrm{0}\:{in}\:{the}\: \\ $$$${interval}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2}\pi.{sketch} \\ $$$${a}=\mathrm{4}\:{and}\:{b}=\mathrm{5} \\ $$
Question Number 88039 Answers: 1 Comments: 0
$${Obtain}\:{the}\:{first}\:{four} \\ $$$${term}\:{of}\:{the}\:{expansion} \\ $$$$\left(\mathrm{4}−{x}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} {when} \\ $$$$\left(\mathrm{1}\right)\mid{x}\mid<\mathrm{1} \\ $$$$\left({ii}\right)\mid{x}\mid>\mathrm{1} \\ $$
Question Number 88033 Answers: 0 Comments: 4
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{sin}\left({x}\right)}{{x}}{dx} \\ $$
Question Number 88032 Answers: 0 Comments: 7
$${decompose}\:{inside}\:{R}\left({x}\right)\:{the}\:{fraction} \\ $$$$\left.\mathrm{1}\right)\:{F}\left({x}\right)\:=\frac{\mathrm{1}}{{x}^{\mathrm{3}} \left({x}−\mathrm{2}\right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{2}\right)\:{F}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{4}} \left({x}−\mathrm{3}\right)^{\mathrm{4}} } \\ $$
Question Number 88029 Answers: 1 Comments: 0
Question Number 88027 Answers: 0 Comments: 1
Question Number 88026 Answers: 0 Comments: 0
Question Number 88021 Answers: 1 Comments: 2
Question Number 88015 Answers: 0 Comments: 0
$${if}\:{u}={f}\left({x},{y}\right)\:{where}\:{x}={rcos}\left(\theta\right)\:\:,\:{y}={r}\:{sin}\left(\theta\right) \\ $$$${prove}\: \\ $$$$\left(\frac{\partial{u}}{\partial{x}}\right)^{\mathrm{2}} +\left(\frac{\partial{u}}{\partial{y}}\right)^{\mathrm{2}} =\left(\frac{\partial{u}}{\partial{r}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{{r}}\left(\frac{\partial{u}}{\partial\theta}\right)^{\mathrm{2}} \\ $$
Question Number 88014 Answers: 2 Comments: 0
$${If}\:{there}\:{is}\:{no}\:{second}'{s}\:{hand}\:{on} \\ $$$${a}\:{clock}\:{and}\:{the}\:{minute}\:{and}\:{hour} \\ $$$${hand}\:{move}\:{in}\:{continuous}\:{fashion}, \\ $$$${then}\:{exactly}\:{at}\:{what}\:{time}\:{between} \\ $$$$\mathrm{02}:\mathrm{10}\:\:{and}\:\mathrm{02}:\mathrm{15}\:{does}\:{the}\:{position} \\ $$$${of}\:{the}\:{two}\:{hands}\:{exactly}\:{coincide}? \\ $$
Question Number 88010 Answers: 0 Comments: 2
$$\int\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{3}}{\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{dx} \\ $$
Pg 1198 Pg 1199 Pg 1200 Pg 1201 Pg 1202 Pg 1203 Pg 1204 Pg 1205 Pg 1206 Pg 1207
Terms of Service
Privacy Policy
Contact: info@tinkutara.com