Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1203

Question Number 89489    Answers: 0   Comments: 2

∫_(−1) ^4 x(√(×+5 ))dx

$$\int_{−\mathrm{1}} ^{\mathrm{4}} \mathrm{x}\sqrt{×+\mathrm{5}\:}\mathrm{dx} \\ $$

Question Number 89487    Answers: 0   Comments: 1

∫_(−1) ^3 (x^2 /(√(x+2))) dx

$$\int_{−\mathrm{1}} ^{\mathrm{3}} \frac{\mathrm{x}^{\mathrm{2}} }{\sqrt{\mathrm{x}+\mathrm{2}}}\:\mathrm{dx} \\ $$

Question Number 89482    Answers: 0   Comments: 7

URGENT ! to TINKUTARA developers: because i didn′t get notification, i have updated the app. but since the update, i can′t either edit my own posts or delete them. i am using a Huawei P20, Android 9.

$${URGENT}\:! \\ $$$${to}\:{TINKUTARA}\:{developers}: \\ $$$${because}\:{i}\:{didn}'{t}\:{get}\:{notification},\:{i} \\ $$$${have}\:{updated}\:{the}\:{app}.\:{but}\:{since}\:{the} \\ $$$${update},\:{i}\:{can}'{t}\:{either}\:{edit}\:{my}\:{own} \\ $$$${posts}\:{or}\:{delete}\:{them}. \\ $$$${i}\:{am}\:{using}\:{a}\:{Huawei}\:{P}\mathrm{20},\:{Android}\:\mathrm{9}. \\ $$

Question Number 89461    Answers: 2   Comments: 0

Question Number 89456    Answers: 1   Comments: 0

(log_x (6))^2 + (log_(1/6) ((1/x)))^2 + log_(1/(√x)) ((1/6)) + log_(√6) (x) + (3/4) = 0

$$\left(\mathrm{log}_{{x}} \left(\mathrm{6}\right)\right)^{\mathrm{2}} \:+\:\left(\mathrm{log}_{\frac{\mathrm{1}}{\mathrm{6}}} \left(\frac{\mathrm{1}}{{x}}\right)\right)^{\mathrm{2}} +\: \\ $$$$\mathrm{log}_{\frac{\mathrm{1}}{\sqrt{{x}}}} \left(\frac{\mathrm{1}}{\mathrm{6}}\right)\:+\:\mathrm{log}_{\sqrt{\mathrm{6}}} \:\left({x}\right)\:+\:\frac{\mathrm{3}}{\mathrm{4}}\:=\:\mathrm{0} \\ $$

Question Number 89454    Answers: 0   Comments: 1

Question Number 89451    Answers: 1   Comments: 0

log_5 ((3−x)(x^2 +2)) ≥ log_5 (x^2 −7x+12)+log_5 (5−x)

$$\mathrm{log}_{\mathrm{5}} \:\left(\left(\mathrm{3}−{x}\right)\left({x}^{\mathrm{2}} +\mathrm{2}\right)\right)\:\geqslant\:\mathrm{log}_{\mathrm{5}} \left({x}^{\mathrm{2}} −\mathrm{7}{x}+\mathrm{12}\right)+\mathrm{log}_{\mathrm{5}} \left(\mathrm{5}−{x}\right) \\ $$

Question Number 89446    Answers: 0   Comments: 1

..

$$.. \\ $$

Question Number 89592    Answers: 1   Comments: 2

cos(x)=k {−1≤k<0}

$${cos}\left({x}\right)={k}\: \\ $$$$\left\{−\mathrm{1}\leqslant{k}<\mathrm{0}\right\} \\ $$

Question Number 89596    Answers: 0   Comments: 1

Question Number 89593    Answers: 0   Comments: 5

show that ∫_0 ^(π/2) ln(sec(x)) ln(csc(x)) dx=((π^2 ln^2 (2))/2)−(π^4 /(48))

$${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sec}\left({x}\right)\right)\:{ln}\left({csc}\left({x}\right)\right)\:{dx}=\frac{\pi^{\mathrm{2}} \:{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}}−\frac{\pi^{\mathrm{4}} }{\mathrm{48}} \\ $$

Question Number 89425    Answers: 0   Comments: 0

∫_1 ^4 (√(1+((y^3 /2)−(1/2)y^(−1) )^2 )) dy

$$\int_{\mathrm{1}} ^{\mathrm{4}} \sqrt{\mathrm{1}+\left(\frac{{y}^{\mathrm{3}} }{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}{y}^{−\mathrm{1}} \right)^{\mathrm{2}} }\:{dy} \\ $$$$ \\ $$

Question Number 89422    Answers: 1   Comments: 1

Question Number 89415    Answers: 1   Comments: 4

Question Number 89412    Answers: 0   Comments: 8

Question Number 89399    Answers: 0   Comments: 11

Hi. A ballot box contains 3 red balls, 4 blues balls and 5 white balls. we draw successively 3 balls in ballot box by re−puting the drawn balls. 1)Calculate the number of draws containing one ball of each color.

$$\mathrm{Hi}. \\ $$$$\mathrm{A}\:\mathrm{ballot}\:\mathrm{box}\:\mathrm{contains}\:\mathrm{3}\:\mathrm{red}\:\mathrm{balls},\:\mathrm{4}\:\mathrm{blues} \\ $$$$\mathrm{balls}\:\mathrm{and}\:\mathrm{5}\:\mathrm{white}\:\mathrm{balls}. \\ $$$$\mathrm{we}\:\mathrm{draw}\:\mathrm{successively}\:\mathrm{3}\:\mathrm{balls}\:\mathrm{in}\:\mathrm{ballot}\:\mathrm{box}\: \\ $$$$\mathrm{by}\:\mathrm{re}−\mathrm{puting}\:\mathrm{the}\:\mathrm{drawn}\:\mathrm{balls}. \\ $$$$\left.\mathrm{1}\right)\mathrm{Calculate}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{draws}\: \\ $$$$\mathrm{containing}\:\mathrm{one}\:\mathrm{ball}\:\mathrm{of}\:\mathrm{each}\:\mathrm{color}. \\ $$

Question Number 89385    Answers: 1   Comments: 1

Question Number 89384    Answers: 0   Comments: 3

Question Number 141569    Answers: 0   Comments: 0

lim_(n→+∝) (((110^2 )/((11−10)(11^2 −10^2 ))) + ((110^2 )/((11^2 −10^2 )(11^3 −10^3 ))) + ....+ ((110^2 )/((11^n −10^n )(11^(n+1) −10^(n+1) ))))

$$\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\left(\frac{\mathrm{110}^{\mathrm{2}} }{\left(\mathrm{11}−\mathrm{10}\right)\left(\mathrm{11}^{\mathrm{2}} −\mathrm{10}^{\mathrm{2}} \right)}\:+\:\frac{\mathrm{110}^{\mathrm{2}} }{\left(\mathrm{11}^{\mathrm{2}} −\mathrm{10}^{\mathrm{2}} \right)\left(\mathrm{11}^{\mathrm{3}} −\mathrm{10}^{\mathrm{3}} \right)}\:+\:....+\:\frac{\mathrm{110}^{\mathrm{2}} }{\left(\mathrm{11}^{\mathrm{n}} −\mathrm{10}^{\mathrm{n}} \right)\left(\mathrm{11}^{\mathrm{n}+\mathrm{1}} −\mathrm{10}^{\mathrm{n}+\mathrm{1}} \right)}\right) \\ $$

Question Number 89382    Answers: 1   Comments: 2

∫_0 ^∞ e^(−2x) cos(3x) sin(4x)

$$\int_{\mathrm{0}} ^{\infty} {e}^{−\mathrm{2}{x}} \:{cos}\left(\mathrm{3}{x}\right)\:{sin}\left(\mathrm{4}{x}\right) \\ $$

Question Number 89361    Answers: 1   Comments: 0

Question Number 89351    Answers: 0   Comments: 4

prove tan 3^o ×tan 39^o ×tan 89^o = tan 15^o

$${prove}\:\mathrm{tan}\:\mathrm{3}^{{o}} ×\mathrm{tan}\:\mathrm{39}^{{o}} ×\mathrm{tan}\:\mathrm{89}^{{o}} \:=\:\mathrm{tan}\:\mathrm{15}^{{o}} \\ $$

Question Number 89511    Answers: 1   Comments: 6

∫_0 ^(3π) (√(1+sin^4 (θ/3) cos^2 (θ/3))) dθ

$$\int_{\mathrm{0}} ^{\mathrm{3}\pi} \sqrt{\mathrm{1}+{sin}^{\mathrm{4}} \frac{\theta}{\mathrm{3}}\:{cos}^{\mathrm{2}} \frac{\theta}{\mathrm{3}}}\:{d}\theta \\ $$

Question Number 89510    Answers: 0   Comments: 3

Find the expansion of Xe^(1/x)

$${Find}\:{the}\:{expansion}\:{of}\:{Xe}^{\frac{\mathrm{1}}{{x}}} \: \\ $$

Question Number 89344    Answers: 0   Comments: 6

(2x−1)^2 +8(√(2xy)) = 4 4y−(√(8xy−1)) = 1

$$\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{8}\sqrt{\mathrm{2}{xy}}\:=\:\mathrm{4} \\ $$$$\mathrm{4}{y}−\sqrt{\mathrm{8}{xy}−\mathrm{1}}\:=\:\mathrm{1} \\ $$

Question Number 89343    Answers: 0   Comments: 2

Given α and β ∈N such that I(α,β)=∫_ ^1 t^α (1−t)^β dt show that I(α;β)=((α!β!)/((α+β+1)!))

$${Given}\:\alpha\:{and}\:\beta\:\in\mathbb{N}\:{such}\:{that} \\ $$$${I}\left(\alpha,\beta\right)=\int_{} ^{\mathrm{1}} {t}^{\alpha} \left(\mathrm{1}−{t}\right)^{\beta} {dt} \\ $$$${show}\:{that} \\ $$$${I}\left(\alpha;\beta\right)=\frac{\alpha!\beta!}{\left(\alpha+\beta+\mathrm{1}\right)!} \\ $$

  Pg 1198      Pg 1199      Pg 1200      Pg 1201      Pg 1202      Pg 1203      Pg 1204      Pg 1205      Pg 1206      Pg 1207   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com