Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1203

Question Number 84902    Answers: 0   Comments: 2

lim_(x→∞) (5^x +5^(2x) )^(1/x) ?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{5}^{\mathrm{x}} +\mathrm{5}^{\mathrm{2x}} \right)\:^{\frac{\mathrm{1}}{\mathrm{x}}} \:? \\ $$

Question Number 84899    Answers: 0   Comments: 1

Question Number 84894    Answers: 0   Comments: 1

Question Number 84892    Answers: 1   Comments: 4

Question Number 84891    Answers: 0   Comments: 0

Question Number 84890    Answers: 0   Comments: 3

If we have : y = e^x What is : (d/dy)e^x = ... If we derivate with y... Please...

$$\mathrm{If}\:\mathrm{we}\:\mathrm{have}\::\:\:\:\:\:{y}\:=\:{e}^{{x}} \\ $$$$ \\ $$$${W}\mathrm{hat}\:\mathrm{is}\::\:\:\:\frac{\mathrm{d}}{\mathrm{d}{y}}{e}^{{x}} \:=\:... \\ $$$$ \\ $$$$\mathrm{If}\:\mathrm{we}\:\mathrm{derivate}\:\mathrm{with}\:{y}... \\ $$$$ \\ $$$$\mathrm{Please}... \\ $$

Question Number 84884    Answers: 2   Comments: 1

Question Number 84879    Answers: 2   Comments: 1

e^(∫((2dx)/(xlnx)))

$$\mathrm{e}^{\int\frac{\mathrm{2dx}}{\mathrm{xlnx}}} \\ $$

Question Number 84873    Answers: 2   Comments: 1

lim_(x→∞) ((x^2 sin (((x!)/x)))/(x^2 +1))

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{sin}\:\left(\frac{\mathrm{x}!}{\mathrm{x}}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}} \\ $$

Question Number 84871    Answers: 1   Comments: 1

If you know (((b^2 +c^2 −a^2 )/(2bc)))^2 +(((c^2 +a^2 −b^2 )/(2ca)))^2 +(((a^2 +b^2 −c^2 )/(2ab)))^2 =3, then what′s the value of ((b^2 +c^2 −a^2 )/(2bc))+((c^2 +a^2 −b^2 )/(2ac))+((a^2 +b^2 −c^2 )/(2ab))?

$$\mathrm{If}\:\mathrm{you}\:\mathrm{know} \\ $$$$\left(\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{bc}}\right)^{\mathrm{2}} +\left(\frac{{c}^{\mathrm{2}} +{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{ca}}\right)^{\mathrm{2}} +\left(\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{ab}}\right)^{\mathrm{2}} =\mathrm{3}, \\ $$$$\mathrm{then}\:\mathrm{what}'\mathrm{s}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{bc}}+\frac{{c}^{\mathrm{2}} +{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{ac}}+\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{ab}}? \\ $$

Question Number 84868    Answers: 1   Comments: 0

(√(1−cos^2 (((3π)/2)−x))) = −cos x+2(√3) sin (x−π)

$$\sqrt{\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \left(\frac{\mathrm{3}\pi}{\mathrm{2}}−\mathrm{x}\right)}\:=\:−\mathrm{cos}\:\mathrm{x}+\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{sin}\:\left(\mathrm{x}−\pi\right) \\ $$

Question Number 84862    Answers: 2   Comments: 1

∫_( 0) ^(100) [tan^(−1) x]dx =? −Jakir Sarif Mondal.

$$\underset{\:\mathrm{0}} {\overset{\mathrm{100}} {\int}}\:\left[\mathrm{tan}^{−\mathrm{1}} {x}\right]{dx}\:=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\boldsymbol{{Jakir}}\:\boldsymbol{{Sarif}}\:\:\boldsymbol{{Mondal}}. \\ $$$$\:\:\:\:\:\:\: \\ $$

Question Number 84859    Answers: 0   Comments: 0

show that lim_(n→∞) ∫_0 ^1 ...∫_0 ^1 (n/(x_1 +x_2 +x_3 +...+x_n ))dx_1 dx_2 ...dx_n =2

$${show}\:{that} \\ $$$$\underset{{n}\rightarrow\infty} {{lim}}\int_{\mathrm{0}} ^{\mathrm{1}} ...\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{n}}{{x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} +...+{x}_{{n}} }{dx}_{\mathrm{1}} {dx}_{\mathrm{2}} ...{dx}_{{n}} =\mathrm{2}\: \\ $$

Question Number 84849    Answers: 0   Comments: 5

ABC is a triangle prove that sinA+sinB+sinC>sinA sinB sinC

$${ABC}\:{is}\:{a}\:{triangle}\: \\ $$$${prove}\:{that} \\ $$$${sinA}+{sinB}+{sinC}>{sinA}\:{sinB}\:{sinC} \\ $$

Question Number 84845    Answers: 1   Comments: 1

Question Number 84843    Answers: 0   Comments: 2

∫((sin(7x))/(cos(3x))) dx

$$\int\frac{{sin}\left(\mathrm{7}{x}\right)}{{cos}\left(\mathrm{3}{x}\right)}\:{dx} \\ $$

Question Number 84835    Answers: 0   Comments: 1

Question Number 84834    Answers: 1   Comments: 1

lim_(x→0) ((√(x tan x))/(sin 3x))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}\:\mathrm{tan}\:\mathrm{x}}}{\mathrm{sin}\:\mathrm{3x}} \\ $$

Question Number 84830    Answers: 1   Comments: 0

(dy/dx) = ((1−x−y)/(x+y))

$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{1}−\mathrm{x}−\mathrm{y}}{\mathrm{x}+\mathrm{y}} \\ $$

Question Number 84828    Answers: 0   Comments: 1

log_3 (25x^2 −4)−log_3 (x) ≤ log_3 (26x^2 +((17)/x)−10)

$$\mathrm{log}_{\mathrm{3}} \left(\mathrm{25x}^{\mathrm{2}} −\mathrm{4}\right)−\mathrm{log}_{\mathrm{3}} \left(\mathrm{x}\right)\:\leqslant\:\mathrm{log}_{\mathrm{3}} \left(\mathrm{26x}^{\mathrm{2}} +\frac{\mathrm{17}}{\mathrm{x}}−\mathrm{10}\right) \\ $$

Question Number 84826    Answers: 0   Comments: 1

(√(x^2 −2x+2)) + log_3 (√(x^2 −2x+10)) = 2

$$\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{2}}\:+\:\mathrm{log}_{\mathrm{3}} \:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{10}}\:=\:\mathrm{2} \\ $$

Question Number 84820    Answers: 1   Comments: 0

Question Number 84814    Answers: 0   Comments: 1

1.Finx

$$\mathrm{1}.{Finx} \\ $$

Question Number 84810    Answers: 0   Comments: 1

∫_0 ^π ln(((1+b cos(x))/(1+a sin(x)))) dx −1<a<b<1

$$\int_{\mathrm{0}} ^{\pi} {ln}\left(\frac{\mathrm{1}+{b}\:{cos}\left({x}\right)}{\mathrm{1}+{a}\:{sin}\left({x}\right)}\right)\:{dx} \\ $$$$−\mathrm{1}<{a}<{b}<\mathrm{1} \\ $$

Question Number 84809    Answers: 1   Comments: 1

∫(x/((x^2 +1)^(3/2) arctan(x))) dx

$$\int\frac{{x}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} {arctan}\left({x}\right)}\:{dx} \\ $$

Question Number 84861    Answers: 0   Comments: 1

If f(x) is an even function, then ∫_( 0) ^π f (cos x) dx = 2∫_( 0) ^(π/2) f (cos x) dx

$$\mathrm{If}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{an}\:\mathrm{even}\:\mathrm{function},\:\mathrm{then} \\ $$$$\underset{\:\mathrm{0}} {\overset{\pi} {\int}}\:{f}\:\left(\mathrm{cos}\:{x}\right)\:{dx}\:=\:\mathrm{2}\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:{f}\:\left(\mathrm{cos}\:{x}\right)\:{dx} \\ $$

  Pg 1198      Pg 1199      Pg 1200      Pg 1201      Pg 1202      Pg 1203      Pg 1204      Pg 1205      Pg 1206      Pg 1207   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com