Σ_(n=1) ^∞ (H_n /(2n+1))(π^2 +2H_n ^((2)) −8H_(2n) ^((2)) )
=((83)/4)ζ(4)−7log(2)ζ(3)−8log^2 (2)ζ(2)−(2/3)log^4 (2)−16 Li_4 ((1/2))
where H_n ^((m)) =1+(1/2^m )+.....+(1/n^m ) represents the nth generalized
harmonic number of order m , ζ denotes the Riemann
zeta function,and Li_n designates the poly logarithm
|