Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1202
Question Number 85021 Answers: 0 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{tan}^{\mathrm{4}} \left({x}\right)\:{cot}\left({ln}^{\mathrm{3}} \left({x}+\mathrm{1}\right)\right){ln}\left({sin}^{\mathrm{3}} \left({x}\right){cos}^{\mathrm{2}} \left({x}\right)+\mathrm{1}\right)}{{sin}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}\:−\sqrt{\mathrm{2}}\right){ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$
Question Number 85020 Answers: 0 Comments: 4
$${solve}\:{integration} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} {x}\:{d}\lfloor{x}^{\mathrm{2}} \rfloor \\ $$
Question Number 85009 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{n}} }{{sh}\left({x}\right)}{dx}\:{with}\:{n}\:{integr}\:{natural} \\ $$
Question Number 85003 Answers: 1 Comments: 7
$${x}\leqslant\left[{x}\right]<{x}+\mathrm{1} \\ $$$${is}\:{that}\:{right}\:{if}\:\left({x}\right)\:{was}\:{negative} \\ $$
Question Number 84998 Answers: 2 Comments: 0
$$\mathrm{what}\:\mathrm{is}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{x}^{\mathrm{29}} \\ $$$$\mathrm{in}\:\mathrm{expression}\:\left(\mathrm{1}+\mathrm{x}^{\mathrm{5}} +\mathrm{x}^{\mathrm{7}} +\mathrm{x}^{\mathrm{9}} \right)^{\mathrm{29}} \\ $$
Question Number 84997 Answers: 0 Comments: 2
$${log}_{\frac{{x}}{\mathrm{2}}} {x}^{\mathrm{2}} −{log}_{\mathrm{16}{x}} {x}^{\mathrm{3}} +\mathrm{40}{log}_{\mathrm{4}{x}} \sqrt{{x}}=\mathrm{0} \\ $$
Question Number 84993 Answers: 2 Comments: 7
$$\mathrm{100}\:{apples}\:{should}\:{be}\:{packed}\:{in}\:{three} \\ $$$${boxes}\:{and}\:{each}\:{box}\:{should}\:{contain} \\ $$$${at}\:{least}\:\mathrm{10}\:{apples}.\:{in}\:{how}\:{many}\:{ways} \\ $$$${can}\:{this}\:{be}\:{done}? \\ $$
Question Number 84988 Answers: 0 Comments: 4
$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{y}\:=\:\mathrm{tan}\:^{\mathrm{2}} \mathrm{z}+\mathrm{cot}\:^{\mathrm{2}} \mathrm{z} \\ $$
Question Number 84987 Answers: 0 Comments: 0
$$\boldsymbol{{I}}{negrate} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{4}} \left(\varrho^{{t}} \boldsymbol{{B}}_{{n}} \mathrm{sin}\:\frac{{n}\pi}{\mathrm{4}}\right)^{\mathrm{2}} {tdt} \\ $$
Question Number 84986 Answers: 1 Comments: 1
$$\mathrm{5}^{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} } \:+\:\mathrm{625}\:\leqslant\:\mathrm{5}^{\mathrm{x}^{\mathrm{2}} +\mathrm{2}} \:+\:\mathrm{5}^{\mathrm{2x}+\mathrm{3}} \: \\ $$
Question Number 84982 Answers: 5 Comments: 0
$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} \:{H}_{{n}+\mathrm{1}} }{{n}^{\mathrm{3}} −{n}} \\ $$
Question Number 84970 Answers: 1 Comments: 0
Question Number 84969 Answers: 0 Comments: 0
$$\mathrm{let}\:\mathrm{c}\:\mathrm{is}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{vector}\:\mathrm{and}\:\overset{\rightarrow} {\mathrm{r}}=\mathrm{x}\hat {\mathrm{i}}+\mathrm{y}\hat {\mathrm{j}}+\mathrm{z}\hat {\mathrm{k}}\:\mathrm{then}\:\mathrm{proved}\:\mathrm{that}\:\mathrm{grad}\:\mid\mathrm{c}×\overset{\rightarrow} {\mathrm{r}}\mid^{\mathrm{n}} =\mathrm{n}\mid\mathrm{c}×\overset{\rightarrow} {\mathrm{r}}\mid^{\mathrm{n}−\mathrm{2}} \mathrm{c}×\left(\overset{\rightarrow} {\mathrm{r}}×\mathrm{c}\right). \\ $$
Question Number 84960 Answers: 2 Comments: 0
Question Number 84958 Answers: 0 Comments: 0
Question Number 84957 Answers: 0 Comments: 1
$$\int\:\left(\mathrm{2}−\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} \:\mathrm{dx}\:=\: \\ $$
Question Number 84956 Answers: 1 Comments: 3
$${show}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} {cos}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)+\mathrm{1}}\:{dx}=\frac{\pi}{\mathrm{2}\phi} \\ $$
Question Number 84954 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}}\:−\:\sqrt{\mathrm{sin}\:\mathrm{x}}}{\mathrm{x}^{\frac{\mathrm{5}}{\mathrm{2}}} }\:=\:? \\ $$
Question Number 84976 Answers: 0 Comments: 4
Question Number 84932 Answers: 0 Comments: 1
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{38x}−\mathrm{38sin}\:\mathrm{x}}{\mathrm{19x}^{\mathrm{3}} }\:=\: \\ $$
Question Number 84942 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{{x}} {sinh}\left({x}−{t}\right)\:{cosh}\left({t}\right)\:{dt} \\ $$
Question Number 84941 Answers: 2 Comments: 1
Question Number 84915 Answers: 1 Comments: 0
$${if}\: \\ $$$${x}>\mathrm{0},{y}>\mathrm{0},{z}>\mathrm{0} \\ $$$${show}\:{that} \\ $$$$\frac{{x}+{y}}{{z}}+\frac{{z}+{y}}{\:{x}}+\frac{{z}+{x}}{{y}}\geqslant\mathrm{6}\:\: \\ $$
Question Number 84913 Answers: 2 Comments: 2
$$ \\ $$$${sin}\frac{\pi}{\mathrm{14}}\:{sin}\frac{\mathrm{3}\pi}{\mathrm{14}}\:{sin}\frac{\mathrm{5}\pi}{\mathrm{15}}=? \\ $$
Question Number 84909 Answers: 2 Comments: 5
$${Find}\:\:\:{all}\:\:{solutions}\:\:{of}\:\:\left({x},\:{y}\right)\:\:{such}\:\:{that} \\ $$$$\:\:\:\:\:\:\:\:{x}^{\mathrm{3}} \:−\:\mathrm{3}{xy}^{\mathrm{2}} \:\:=\:\:\mathrm{2010} \\ $$$$\:\:\:\:\:\:\:\:{y}^{\mathrm{3}} \:−\:\mathrm{3}{x}^{\mathrm{2}} {y}\:\:=\:\:\mathrm{2009} \\ $$$${x},\:{y}\:\:\in\:\:\mathbb{R} \\ $$
Question Number 84904 Answers: 0 Comments: 1
$$\mathrm{3}^{\mathrm{2x}^{\mathrm{2}} } \:+\:\mathrm{3}^{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{5}} \:\geqslant\:\mathrm{10}.\:\mathrm{3}^{\mathrm{4x}+\mathrm{6}} \\ $$$$ \\ $$
Pg 1197 Pg 1198 Pg 1199 Pg 1200 Pg 1201 Pg 1202 Pg 1203 Pg 1204 Pg 1205 Pg 1206
Terms of Service
Privacy Policy
Contact: info@tinkutara.com