Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1202

Question Number 85021    Answers: 0   Comments: 0

lim_(x→0) ((tan^4 (x) cot(ln^3 (x+1))ln(sin^3 (x)cos^2 (x)+1))/(sin((√(x^2 +2)) −(√2))ln(x^2 +1)))

$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{tan}^{\mathrm{4}} \left({x}\right)\:{cot}\left({ln}^{\mathrm{3}} \left({x}+\mathrm{1}\right)\right){ln}\left({sin}^{\mathrm{3}} \left({x}\right){cos}^{\mathrm{2}} \left({x}\right)+\mathrm{1}\right)}{{sin}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}\:−\sqrt{\mathrm{2}}\right){ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$

Question Number 85020    Answers: 0   Comments: 4

solve integration ∫_1 ^2 x d⌊x^2 ⌋

$${solve}\:{integration} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} {x}\:{d}\lfloor{x}^{\mathrm{2}} \rfloor \\ $$

Question Number 85009    Answers: 1   Comments: 1

calculate ∫_0 ^∞ (x^n /(sh(x)))dx with n integr natural

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{n}} }{{sh}\left({x}\right)}{dx}\:{with}\:{n}\:{integr}\:{natural} \\ $$

Question Number 85003    Answers: 1   Comments: 7

x≤[x]<x+1 is that right if (x) was negative

$${x}\leqslant\left[{x}\right]<{x}+\mathrm{1} \\ $$$${is}\:{that}\:{right}\:{if}\:\left({x}\right)\:{was}\:{negative} \\ $$

Question Number 84998    Answers: 2   Comments: 0

what is coefficient of x^(29) in expression (1+x^5 +x^7 +x^9 )^(29)

$$\mathrm{what}\:\mathrm{is}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{x}^{\mathrm{29}} \\ $$$$\mathrm{in}\:\mathrm{expression}\:\left(\mathrm{1}+\mathrm{x}^{\mathrm{5}} +\mathrm{x}^{\mathrm{7}} +\mathrm{x}^{\mathrm{9}} \right)^{\mathrm{29}} \\ $$

Question Number 84997    Answers: 0   Comments: 2

log_(x/2) x^2 −log_(16x) x^3 +40log_(4x) (√x)=0

$${log}_{\frac{{x}}{\mathrm{2}}} {x}^{\mathrm{2}} −{log}_{\mathrm{16}{x}} {x}^{\mathrm{3}} +\mathrm{40}{log}_{\mathrm{4}{x}} \sqrt{{x}}=\mathrm{0} \\ $$

Question Number 84993    Answers: 2   Comments: 7

100 apples should be packed in three boxes and each box should contain at least 10 apples. in how many ways can this be done?

$$\mathrm{100}\:{apples}\:{should}\:{be}\:{packed}\:{in}\:{three} \\ $$$${boxes}\:{and}\:{each}\:{box}\:{should}\:{contain} \\ $$$${at}\:{least}\:\mathrm{10}\:{apples}.\:{in}\:{how}\:{many}\:{ways} \\ $$$${can}\:{this}\:{be}\:{done}? \\ $$

Question Number 84988    Answers: 0   Comments: 4

prove that sin^2 x+cos^2 y = tan^2 z+cot^2 z

$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{y}\:=\:\mathrm{tan}\:^{\mathrm{2}} \mathrm{z}+\mathrm{cot}\:^{\mathrm{2}} \mathrm{z} \\ $$

Question Number 84987    Answers: 0   Comments: 0

Inegrate ∫_0 ^4 (ϱ^t B_n sin ((nπ)/4))^2 tdt

$$\boldsymbol{{I}}{negrate} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{4}} \left(\varrho^{{t}} \boldsymbol{{B}}_{{n}} \mathrm{sin}\:\frac{{n}\pi}{\mathrm{4}}\right)^{\mathrm{2}} {tdt} \\ $$

Question Number 84986    Answers: 1   Comments: 1

5^((x+1)^2 ) + 625 ≤ 5^(x^2 +2) + 5^(2x+3)

$$\mathrm{5}^{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} } \:+\:\mathrm{625}\:\leqslant\:\mathrm{5}^{\mathrm{x}^{\mathrm{2}} +\mathrm{2}} \:+\:\mathrm{5}^{\mathrm{2x}+\mathrm{3}} \: \\ $$

Question Number 84982    Answers: 5   Comments: 0

Σ_(n=2) ^∞ ((H_n H_(n+1) )/(n^3 −n))

$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} \:{H}_{{n}+\mathrm{1}} }{{n}^{\mathrm{3}} −{n}} \\ $$

Question Number 84970    Answers: 1   Comments: 0

Question Number 84969    Answers: 0   Comments: 0

let c is a constant vector and r^→ =xi^ +yj^ +zk^ then proved that grad ∣c×r^→ ∣^n =n∣c×r^→ ∣^(n−2) c×(r^→ ×c).

$$\mathrm{let}\:\mathrm{c}\:\mathrm{is}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{vector}\:\mathrm{and}\:\overset{\rightarrow} {\mathrm{r}}=\mathrm{x}\hat {\mathrm{i}}+\mathrm{y}\hat {\mathrm{j}}+\mathrm{z}\hat {\mathrm{k}}\:\mathrm{then}\:\mathrm{proved}\:\mathrm{that}\:\mathrm{grad}\:\mid\mathrm{c}×\overset{\rightarrow} {\mathrm{r}}\mid^{\mathrm{n}} =\mathrm{n}\mid\mathrm{c}×\overset{\rightarrow} {\mathrm{r}}\mid^{\mathrm{n}−\mathrm{2}} \mathrm{c}×\left(\overset{\rightarrow} {\mathrm{r}}×\mathrm{c}\right). \\ $$

Question Number 84960    Answers: 2   Comments: 0

Question Number 84958    Answers: 0   Comments: 0

Question Number 84957    Answers: 0   Comments: 1

∫ (2−x^2 )^3 dx =

$$\int\:\left(\mathrm{2}−\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} \:\mathrm{dx}\:=\: \\ $$

Question Number 84956    Answers: 1   Comments: 3

show that ∫_0 ^(+∞) (1/(x^4 +2x^2 cos(((2π)/5))+1)) dx=(π/(2φ))

$${show}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} {cos}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)+\mathrm{1}}\:{dx}=\frac{\pi}{\mathrm{2}\phi} \\ $$

Question Number 84954    Answers: 1   Comments: 0

lim_(x→0) (((√x) − (√(sin x)))/x^(5/2) ) = ?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}}\:−\:\sqrt{\mathrm{sin}\:\mathrm{x}}}{\mathrm{x}^{\frac{\mathrm{5}}{\mathrm{2}}} }\:=\:? \\ $$

Question Number 84976    Answers: 0   Comments: 4

Question Number 84932    Answers: 0   Comments: 1

lim_(x→0) ((sin 38x−38sin x)/(19x^3 )) =

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{38x}−\mathrm{38sin}\:\mathrm{x}}{\mathrm{19x}^{\mathrm{3}} }\:=\: \\ $$

Question Number 84942    Answers: 1   Comments: 0

∫_0 ^x sinh(x−t) cosh(t) dt

$$\int_{\mathrm{0}} ^{{x}} {sinh}\left({x}−{t}\right)\:{cosh}\left({t}\right)\:{dt} \\ $$

Question Number 84941    Answers: 2   Comments: 1

Question Number 84915    Answers: 1   Comments: 0

if x>0,y>0,z>0 show that ((x+y)/z)+((z+y)/( x))+((z+x)/y)≥6

$${if}\: \\ $$$${x}>\mathrm{0},{y}>\mathrm{0},{z}>\mathrm{0} \\ $$$${show}\:{that} \\ $$$$\frac{{x}+{y}}{{z}}+\frac{{z}+{y}}{\:{x}}+\frac{{z}+{x}}{{y}}\geqslant\mathrm{6}\:\: \\ $$

Question Number 84913    Answers: 2   Comments: 2

sin(π/(14)) sin((3π)/(14)) sin((5π)/(15))=?

$$ \\ $$$${sin}\frac{\pi}{\mathrm{14}}\:{sin}\frac{\mathrm{3}\pi}{\mathrm{14}}\:{sin}\frac{\mathrm{5}\pi}{\mathrm{15}}=? \\ $$

Question Number 84909    Answers: 2   Comments: 5

Find all solutions of (x, y) such that x^3 − 3xy^2 = 2010 y^3 − 3x^2 y = 2009 x, y ∈ R

$${Find}\:\:\:{all}\:\:{solutions}\:\:{of}\:\:\left({x},\:{y}\right)\:\:{such}\:\:{that} \\ $$$$\:\:\:\:\:\:\:\:{x}^{\mathrm{3}} \:−\:\mathrm{3}{xy}^{\mathrm{2}} \:\:=\:\:\mathrm{2010} \\ $$$$\:\:\:\:\:\:\:\:{y}^{\mathrm{3}} \:−\:\mathrm{3}{x}^{\mathrm{2}} {y}\:\:=\:\:\mathrm{2009} \\ $$$${x},\:{y}\:\:\in\:\:\mathbb{R} \\ $$

Question Number 84904    Answers: 0   Comments: 1

3^(2x^2 ) + 3^(x^2 +2x+5) ≥ 10. 3^(4x+6)

$$\mathrm{3}^{\mathrm{2x}^{\mathrm{2}} } \:+\:\mathrm{3}^{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{5}} \:\geqslant\:\mathrm{10}.\:\mathrm{3}^{\mathrm{4x}+\mathrm{6}} \\ $$$$ \\ $$

  Pg 1197      Pg 1198      Pg 1199      Pg 1200      Pg 1201      Pg 1202      Pg 1203      Pg 1204      Pg 1205      Pg 1206   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com