Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1202

Question Number 89649    Answers: 0   Comments: 3

If (((a−b b+c)),((3d+c 2c−d)) ) = (((8 1)),((7 6)) ) then a+b+c+d = A. −((53)/7) B. −((18)/7) C. ((43)/7) D. ((38)/7) E. ((53)/7)

$$\mathrm{If}\:\begin{pmatrix}{\mathrm{a}−\mathrm{b}\:\:\:\:\:\:\mathrm{b}+\mathrm{c}}\\{\mathrm{3d}+\mathrm{c}\:\:\:\:\:\mathrm{2c}−\mathrm{d}}\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{8}\:\:\:\:\mathrm{1}}\\{\mathrm{7}\:\:\:\:\mathrm{6}}\end{pmatrix} \\ $$$$\mathrm{then}\:\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}\:=\: \\ $$$$\mathrm{A}.\:−\frac{\mathrm{53}}{\mathrm{7}}\:\:\:\:\:\:\:\mathrm{B}.\:−\frac{\mathrm{18}}{\mathrm{7}}\:\:\:\:\:\:\:\mathrm{C}.\:\frac{\mathrm{43}}{\mathrm{7}} \\ $$$$\mathrm{D}.\:\frac{\mathrm{38}}{\mathrm{7}}\:\:\:\:\mathrm{E}.\:\frac{\mathrm{53}}{\mathrm{7}} \\ $$

Question Number 89647    Answers: 1   Comments: 0

Question Number 89867    Answers: 2   Comments: 1

find the integration ∫ln⌊x⌋ dx ; x>2

$${find}\:{the}\:{integration} \\ $$$$\int{ln}\lfloor{x}\rfloor\:{dx}\:\:\:\:\:\:;\:{x}>\mathrm{2} \\ $$

Question Number 89636    Answers: 3   Comments: 2

∫ ((cos x+sin x)/(sin 2x)) dx

$$\int\:\frac{\mathrm{cos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}}{\mathrm{sin}\:\mathrm{2x}}\:\mathrm{dx}\: \\ $$

Question Number 89632    Answers: 1   Comments: 0

y(√(x^2 −1)) dx + x(√(y^2 −1)) dy =0

$$\mathrm{y}\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}\:\mathrm{dx}\:+\:\mathrm{x}\sqrt{\mathrm{y}^{\mathrm{2}} −\mathrm{1}}\:\mathrm{dy}\:=\mathrm{0} \\ $$

Question Number 89626    Answers: 0   Comments: 1

Question Number 89624    Answers: 1   Comments: 3

Q1)find tow power series solutions of the given D.E about x=0 y^(′′) −2xy^′ +y=0 Q2)use the power series method to solve the given intial value problem y^(′′) −2xy^′ +8y=0 y(0)=3y^′ (0)=0

$$\left.{Q}\mathrm{1}\right){find}\:{tow}\:{power}\:{series}\:{solutions}\:{of}\:{the}\: \\ $$$${given}\:{D}.{E}\:{about}\:{x}=\mathrm{0} \\ $$$${y}^{''} −\mathrm{2}{xy}^{'} +{y}=\mathrm{0} \\ $$$$ \\ $$$$\left.{Q}\mathrm{2}\right){use}\:{the}\:{power}\:{series}\:{method}\:\:{to}\:{solve}\:{the} \\ $$$${given}\:{intial}\:{value}\:{problem} \\ $$$${y}^{''} −\mathrm{2}{xy}^{'} +\mathrm{8}{y}=\mathrm{0} \\ $$$${y}\left(\mathrm{0}\right)=\mathrm{3}{y}^{'} \left(\mathrm{0}\right)=\mathrm{0} \\ $$

Question Number 89620    Answers: 0   Comments: 0

x=^(c−1) (√((ay−bz)/(cdy))) What will happen to x when a increses? Explain.

$${x}=^{{c}−\mathrm{1}} \sqrt{\frac{{ay}−{bz}}{{cdy}}} \\ $$$$ \\ $$$$\mathrm{What}\:\mathrm{will}\:\mathrm{happen}\:\mathrm{to}\:\boldsymbol{{x}}\:\mathrm{when}\:\boldsymbol{{a}}\:\mathrm{increses}? \\ $$$$\mathrm{Explain}. \\ $$

Question Number 89618    Answers: 1   Comments: 2

Question Number 89614    Answers: 1   Comments: 0

how to write integral sign with limits

$$\mathrm{how}\:\mathrm{to}\:\mathrm{write}\:\mathrm{integral}\:\mathrm{sign}\:\mathrm{with}\:\mathrm{limits} \\ $$

Question Number 89600    Answers: 0   Comments: 2

(dy/dx) = ((y+(√(x^2 −y^2 )))/x)

$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{y}+\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }}{\mathrm{x}}\: \\ $$

Question Number 89599    Answers: 0   Comments: 6

Question Number 89576    Answers: 0   Comments: 3

is lim_(x→a) ⌊f(x)⌋=⌊lim_(x→a ) f(x)⌋

$${is}\:\:\underset{{x}\rightarrow{a}} {{lim}}\lfloor{f}\left({x}\right)\rfloor=\lfloor\underset{{x}\rightarrow{a}\:} {{lim}}\:{f}\left({x}\right)\rfloor\: \\ $$

Question Number 89580    Answers: 1   Comments: 0

Question Number 89584    Answers: 0   Comments: 1

∫ ((sin^4 (x) dx)/(4+cos^2 (x)))

$$\int\:\frac{\mathrm{sin}\:^{\mathrm{4}} \left(\mathrm{x}\right)\:\mathrm{dx}}{\mathrm{4}+\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{x}\right)} \\ $$

Question Number 89558    Answers: 0   Comments: 0

Show that difference of the focus distance of any point on hyperbola is equal to the length of the tranversed axis

$${Show}\:{that}\:{difference} \\ $$$${of}\:{the}\:{focus}\:{distance} \\ $$$${of}\:{any}\:{point}\:{on}\:{hyperbola} \\ $$$${is}\:{equal}\:{to}\:{the}\:{length}\:{of} \\ $$$${the}\:{tranversed}\:{axis} \\ $$

Question Number 89540    Answers: 0   Comments: 3

lim_(x→0) ((cos(x^2 )−1+(x^4 /2))/(x^2 (x−sin(x))^2 ))

$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{cos}\left({x}^{\mathrm{2}} \right)−\mathrm{1}+\frac{{x}^{\mathrm{4}} }{\mathrm{2}}}{{x}^{\mathrm{2}} \left({x}−{sin}\left({x}\right)\right)^{\mathrm{2}} } \\ $$

Question Number 89534    Answers: 0   Comments: 2

Question Number 89530    Answers: 0   Comments: 2

F which is the set of funtions from R to R is a vectorial space and G(a part of F) is the set of odd functions such as G={ f ∈ F/∀ x∈ R, f(x)=−f(−x)} 1) Show that G is sub vector space of F in R.

$$\mathrm{F}\:\mathrm{which}\:\mathrm{is}\:\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{funtions}\:\mathrm{from}\:\mathbb{R}\:\mathrm{to}\:\mathbb{R}\: \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{vectorial}\:\mathrm{space}\:\mathrm{and}\:\mathrm{G}\left(\mathrm{a}\:\mathrm{part}\:\mathrm{of}\:\mathrm{F}\right)\:\mathrm{is} \\ $$$$\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{odd}\:\mathrm{functions}\:\mathrm{such}\:\mathrm{as} \\ $$$$\mathrm{G}=\left\{\:{f}\:\in\:\mathrm{F}/\forall\:\mathrm{x}\in\:\mathbb{R},\:{f}\left({x}\right)=−{f}\left(−{x}\right)\right\} \\ $$$$\left.\mathrm{1}\right)\:{S}\mathrm{how}\:\mathrm{that}\:\mathrm{G}\:\mathrm{is}\:\mathrm{sub}\:\mathrm{vector}\:\mathrm{space}\:\mathrm{of}\:\mathrm{F} \\ $$$$\mathrm{in}\:\mathbb{R}. \\ $$

Question Number 89586    Answers: 1   Comments: 0

2018^(2019) −2019^(2018 ) ≡? (mod 4)

$$ \\ $$$$\mathrm{2018}^{\mathrm{2019}} −\mathrm{2019}^{\mathrm{2018}\:} \equiv?\:\left({mod}\:\mathrm{4}\right) \\ $$

Question Number 89513    Answers: 0   Comments: 21

i open this test post to see if i can edit or delete it later.

$${i}\:{open}\:{this}\:{test}\:{post}\:{to}\:{see}\:{if}\:{i}\:{can} \\ $$$${edit}\:{or}\:{delete}\:{it}\:{later}. \\ $$

Question Number 89505    Answers: 1   Comments: 0

Question Number 89496    Answers: 2   Comments: 0

Question Number 89493    Answers: 0   Comments: 1

Question Number 89560    Answers: 0   Comments: 1

without use intergration by party ∫_0 ^(π/4) e^θ cos 2θ dθ

$${without}\:{use}\:{intergration} \\ $$$${by}\:{party} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {e}^{\theta} \mathrm{cos}\:\mathrm{2}\theta\:{d}\theta \\ $$

Question Number 89490    Answers: 0   Comments: 0

lim_(x→∞) xlnxln(((ln(x+1))/(lnx)))=?

$$\underset{{x}\rightarrow\infty} {{lim}xlnxln}\left(\frac{{ln}\left({x}+\mathrm{1}\right)}{{lnx}}\right)=? \\ $$

  Pg 1197      Pg 1198      Pg 1199      Pg 1200      Pg 1201      Pg 1202      Pg 1203      Pg 1204      Pg 1205      Pg 1206   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com