Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1201

Question Number 85153    Answers: 1   Comments: 1

∫(√(4x^2 −4))dx = ...

$$\int\sqrt{\mathrm{4}\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{4}}\boldsymbol{\mathrm{dx}}\:=\:... \\ $$$$ \\ $$$$ \\ $$

Question Number 85148    Answers: 0   Comments: 0

∫_0 ^1 ((1+x^4 )/(1+x^3 +x^7 )) dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}+{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{3}} +{x}^{\mathrm{7}} }\:{dx} \\ $$

Question Number 85146    Answers: 2   Comments: 1

find minimum & maximum value of function f(x)= −sin^2 x+sin x−(1/2) , −π≤x≤π

$$\mathrm{find}\:\mathrm{minimum}\:\&\:\mathrm{maximum}\:\mathrm{value}\: \\ $$$$\mathrm{of}\:\mathrm{function}\: \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\:−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{sin}\:\mathrm{x}−\frac{\mathrm{1}}{\mathrm{2}}\:,\:−\pi\leqslant\mathrm{x}\leqslant\pi \\ $$

Question Number 85142    Answers: 1   Comments: 0

show that ∫_0 ^n [x^2 ]dx =n(n^2 −1)−Σ_(k=1) ^(n^2 −1) (√k)

$${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{{n}} \left[{x}^{\mathrm{2}} \right]{dx}\:={n}\left({n}^{\mathrm{2}} −\mathrm{1}\right)−\underset{{k}=\mathrm{1}} {\overset{{n}^{\mathrm{2}} −\mathrm{1}} {\sum}}\sqrt{{k}}\: \\ $$

Question Number 85131    Answers: 0   Comments: 4

what procedure will you use to find the inverse of A = ((2,1,9),(1,5,1),(3,0,3) )

$$\mathrm{what}\:\mathrm{procedure}\:\mathrm{will}\:\mathrm{you}\:\mathrm{use}\:\mathrm{to}\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{inverse}\:\mathrm{of} \\ $$$$\:\mathrm{A}\:=\:\begin{pmatrix}{\mathrm{2}}&{\mathrm{1}}&{\mathrm{9}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{1}}\\{\mathrm{3}}&{\mathrm{0}}&{\mathrm{3}}\end{pmatrix} \\ $$

Question Number 85130    Answers: 2   Comments: 0

given f(x)= ((√2)+1)sin x +((√2)−1)cos x find masimum value of function [f(x)]^2

$$\mathrm{given}\:\mathrm{f}\left(\mathrm{x}\right)=\:\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)\mathrm{sin}\:\mathrm{x}\:+\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\mathrm{cos}\:\mathrm{x} \\ $$$$\mathrm{find}\:\mathrm{masimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{function} \\ $$$$\left[\mathrm{f}\left(\mathrm{x}\right)\right]^{\mathrm{2}} \\ $$

Question Number 85129    Answers: 0   Comments: 2

lim_(x→e) [∫_0 ^e ((1/x))dx] =?

$$\underset{{x}\rightarrow{e}} {\mathrm{lim}}\:\left[\underset{\mathrm{0}} {\overset{{e}} {\int}}\left(\frac{\mathrm{1}}{{x}}\right){dx}\right]\:=? \\ $$

Question Number 85127    Answers: 1   Comments: 4

evaluate: lim_(x→0) (√x) ln(sin x)

$$\mathrm{evaluate}: \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt{{x}}\:\mathrm{ln}\left(\mathrm{sin}\:{x}\right) \\ $$$$ \\ $$

Question Number 85116    Answers: 0   Comments: 1

Reduce the equations to Clairaut′s form and find the general solution : x^2 p^2 +yp(2x+y)+y^2 =0 (put y=u and xy=v)

$$\:\mathrm{Reduce}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{to}\:\mathrm{Clairaut}'\mathrm{s}\:\mathrm{form} \\ $$$$\:\mathrm{and}\:\mathrm{find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:: \\ $$$$\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \boldsymbol{\mathrm{p}}^{\mathrm{2}} +\boldsymbol{\mathrm{yp}}\left(\mathrm{2}\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}\right)+\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\mathrm{0}\:\:\:\:\:\:\left({put}\:\boldsymbol{{y}}=\boldsymbol{{u}}\:{and}\:\boldsymbol{{xy}}=\boldsymbol{{v}}\right) \\ $$$$\: \\ $$

Question Number 85111    Answers: 1   Comments: 4

Solve the differential equation: ★.(1+x+xy^2 )dy+(y+y^3 )dx

$$\:\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}}: \\ $$$$\:\bigstar.\left(\mathrm{1}+\mathrm{x}+\mathrm{xy}^{\mathrm{2}} \right)\mathrm{dy}+\left(\mathrm{y}+\mathrm{y}^{\mathrm{3}} \right)\mathrm{dx} \\ $$$$\: \\ $$

Question Number 85105    Answers: 1   Comments: 0

Question Number 85104    Answers: 1   Comments: 2

Given { ((x^2 −2xy−3x = −1)),((4y^2 −2xy+6y = −1)) :} find 2y − x

$$\mathrm{Given}\: \\ $$$$\begin{cases}{\mathrm{x}^{\mathrm{2}} −\mathrm{2xy}−\mathrm{3x}\:=\:−\mathrm{1}}\\{\mathrm{4y}^{\mathrm{2}} −\mathrm{2xy}+\mathrm{6y}\:=\:−\mathrm{1}}\end{cases} \\ $$$$\mathrm{find}\:\mathrm{2y}\:−\:\mathrm{x} \\ $$

Question Number 85103    Answers: 0   Comments: 0

Question Number 85097    Answers: 1   Comments: 0

∫_(−π) ^π x^(2020) (sin x+cos x) dx = 8 find ∫_(−π) ^π x^(2020) cos x dx = ?

$$\underset{−\pi} {\overset{\pi} {\int}}\:\mathrm{x}^{\mathrm{2020}} \:\left(\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\right)\:\mathrm{dx}\:=\:\mathrm{8} \\ $$$$\mathrm{find}\:\underset{−\pi} {\overset{\pi} {\int}}\:\mathrm{x}^{\mathrm{2020}} \:\mathrm{cos}\:\mathrm{x}\:\mathrm{dx}\:=\:? \\ $$

Question Number 85091    Answers: 0   Comments: 1

Question Number 85088    Answers: 0   Comments: 1

Question Number 85083    Answers: 0   Comments: 1

a^3 −b^3 =...?

$${a}^{\mathrm{3}} −{b}^{\mathrm{3}} =...? \\ $$

Question Number 85074    Answers: 1   Comments: 1

Question Number 85073    Answers: 0   Comments: 1

Prove by mathematical induction that 2002^(n+2) +2003^(2n+1) is divisible by 4005

$${Prove}\:{by}\:{mathematical}\:{induction}\:{that} \\ $$$$\mathrm{2002}^{{n}+\mathrm{2}} +\mathrm{2003}^{\mathrm{2}{n}+\mathrm{1}} \:\:\:\:{is}\:{divisible}\:{by}\:\mathrm{4005} \\ $$

Question Number 85068    Answers: 0   Comments: 3

Question Number 85061    Answers: 1   Comments: 3

lim_(x→0) ((x tan2x−2x tan(x))/((1−cos(2x))^2 ))

$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{x}\:{tan}\mathrm{2}{x}−\mathrm{2}{x}\:{tan}\left({x}\right)}{\left(\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)\right)^{\mathrm{2}} } \\ $$

Question Number 85059    Answers: 1   Comments: 0

Question Number 85057    Answers: 0   Comments: 1

find lim_(x→0) ln (sin xcos (1/x)+1) if it exits.

$${find}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}ln}\:\left(\mathrm{sin}\:{x}\mathrm{cos}\:\frac{\mathrm{1}}{{x}}+\mathrm{1}\right)\:{if}\:{it}\:{exits}. \\ $$

Question Number 85050    Answers: 1   Comments: 0

(x−4y+3)dx = (x−5y+4)dy

$$\left(\mathrm{x}−\mathrm{4y}+\mathrm{3}\right)\mathrm{dx}\:=\:\left(\mathrm{x}−\mathrm{5y}+\mathrm{4}\right)\mathrm{dy} \\ $$

Question Number 85041    Answers: 0   Comments: 0

Question Number 85036    Answers: 0   Comments: 1

If A= [((x x x )),((4_(2 ) −2_3 1_4 )) ]findX if p(A)=3

$${If}\:{A}=\begin{bmatrix}{{x}\:\:\:\:{x}\:\:\:{x}\:\:}\\{\underset{\mathrm{2}\:\:} {\mathrm{4}}\:−\underset{\mathrm{3}} {\mathrm{2}}\:\:\:\underset{\mathrm{4}} {\mathrm{1}}}\end{bmatrix}{findX}\:{if}\:{p}\left({A}\right)=\mathrm{3} \\ $$$$ \\ $$$$ \\ $$

  Pg 1196      Pg 1197      Pg 1198      Pg 1199      Pg 1200      Pg 1201      Pg 1202      Pg 1203      Pg 1204      Pg 1205   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com