Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1201
Question Number 95323 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\int_{{x}} ^{\mathrm{2}{x}} \:\frac{{ln}\left(\mathrm{2}+{t}\right)}{{t}}{dt}\:=\:\left({ln}\mathrm{2}\right)^{\mathrm{2}} \\ $$
Question Number 95316 Answers: 1 Comments: 0
$$\frac{{dy}}{{dx}}−{y}\:=\:{xy}^{\mathrm{5}} \: \\ $$
Question Number 95309 Answers: 1 Comments: 0
$$\mathrm{if}\:\mathrm{y}\:=\:\left[\:\mathrm{2x}+\mathrm{5}\:\right]\:=\:\mathrm{3}\left[\mathrm{x}−\mathrm{4}\right]\: \\ $$$$\mathrm{then}\:\left[\:\mathrm{3x}+\mathrm{y}\:\right]\:=\:?\: \\ $$
Question Number 95294 Answers: 1 Comments: 2
$$\mathrm{3}\:\mathrm{men},\:\mathrm{4}\:\mathrm{women}\:\&\:\mathrm{6}\:\mathrm{boy}\:\mathrm{together} \\ $$$$\mathrm{working}\:\mathrm{a}\:\mathrm{job}\:\mathrm{within}\:\mathrm{25}\:\mathrm{day}.\:\mathrm{if}\:\mathrm{2}\:\mathrm{men}\: \\ $$$$,\:\mathrm{3}\:\mathrm{women}\:\mathrm{and}\:\mathrm{4}\:\mathrm{boy}\:\mathrm{working}\:\mathrm{the}\: \\ $$$$\mathrm{same}\:\mathrm{job},\:\mathrm{complete}\:\mathrm{in}\:? \\ $$
Question Number 95277 Answers: 2 Comments: 4
Question Number 95269 Answers: 0 Comments: 3
Question Number 100664 Answers: 1 Comments: 0
$$\mathrm{A}\:\mathrm{matrix}\:\mathrm{2x2}\:\&\:\mathrm{B}\:=\:\begin{pmatrix}{−\mathrm{2}\:\:\:\:\mathrm{3}}\\{\:\:\mathrm{2}\:\:\:\:\:\:\mathrm{4}}\end{pmatrix}\:\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\mathrm{A}^{\mathrm{T}} \mathrm{B}+\mathrm{3A}^{\mathrm{T}} \:=\:\begin{pmatrix}{\:\:\:\mathrm{5}\:\:\:\:\mathrm{4}}\\{−\mathrm{1}\:\:\:\mathrm{1}}\end{pmatrix}\:\:\mathrm{so}\:\mathrm{find}\:\mathrm{det}\left(\mathrm{4A}^{−\mathrm{1}} \right) \\ $$
Question Number 95262 Answers: 3 Comments: 0
$$\mathrm{3x}^{\mathrm{2}} +\mathrm{5x}^{\mathrm{4}} −\mathrm{7} \\ $$$$\mathrm{plz}\:\mathrm{help}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{equation} \\ $$
Question Number 95260 Answers: 1 Comments: 3
$$\mathrm{if}\:\mathrm{the}\:\mathrm{line}\:\mathrm{3x}+\mathrm{2y}−\mathrm{1}=\mathrm{0}\:\mathrm{transformed} \\ $$$$\mathrm{by}\:\mathrm{matrix}\:\mathrm{A}=\begin{pmatrix}{\mathrm{1}\:\:\:\mathrm{a}}\\{\mathrm{b}\:\:\:\mathrm{2}}\end{pmatrix}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{image}\:\mathrm{is}\:\mathrm{the}\:\mathrm{line}\:\mathrm{2x}+\mathrm{8y}+\mathrm{c}=\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}×\mathrm{b}×\mathrm{c}\: \\ $$
Question Number 95259 Answers: 1 Comments: 1
$${find}\:{all}\:{roots}\:\left(\sqrt{\mathrm{6}}\:−\sqrt{\mathrm{2}}{i}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} {by}\:{using}\:{demover}\:{theorem}\:? \\ $$
Question Number 95246 Answers: 4 Comments: 0
Question Number 95232 Answers: 3 Comments: 6
Question Number 95230 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\mathrm{7}^{\sqrt{\mathrm{x}}} \:−\mathrm{1}}{\mathrm{2}^{\sqrt{\mathrm{x}}} \:−\mathrm{1}}\:=\:? \\ $$
Question Number 95339 Answers: 6 Comments: 0
$$\mathrm{f}\left(\mathrm{x}\right)=\mid\mathrm{2x}+\mathrm{3}\mid \\ $$$$\mathrm{f}\:'\left(\mathrm{x}\right)=...? \\ $$
Question Number 95227 Answers: 1 Comments: 0
$$\underset{−\pi} {\overset{\pi} {\int}}\:\mid\mathrm{sin}\:\mathrm{x}\:+\:\mathrm{cos}\:\mathrm{x}\:\mid\:\mathrm{dx}\:=?\: \\ $$
Question Number 95222 Answers: 1 Comments: 0
$$\begin{cases}{{x}^{\mathrm{2}} \:+\:{x}\:\sqrt[{\mathrm{3}\:\:}]{{xy}^{\mathrm{2}} }\:=\:\mathrm{80}\:}\\{{y}^{\mathrm{2}} \:+\:{y}\:\sqrt[{\mathrm{3}\:\:}]{{x}^{\mathrm{2}} {y}}\:=\:\mathrm{5}\:}\end{cases} \\ $$$${find}\:{x}\:{and}\:{y}\: \\ $$
Question Number 95221 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\mathrm{2}+\mathrm{cos}\theta\right)\mathrm{d}\theta \\ $$
Question Number 95218 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}^{\mathrm{3}} \left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$
Question Number 95217 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}^{\mathrm{2}} \left(\mathrm{n}+\mathrm{2}\right)^{\mathrm{3}} } \\ $$
Question Number 95216 Answers: 1 Comments: 0
$$\mathrm{calculste}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{n}}{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{n}+\mathrm{3}\right)} \\ $$
Question Number 95215 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{4n}+\mathrm{1}} \\ $$
Question Number 95213 Answers: 0 Comments: 0
$$\mathrm{find}\:\int\:\frac{\sqrt{\mathrm{x}\left(\mathrm{x}+\mathrm{1}\right)}}{\sqrt{\mathrm{x}+\mathrm{3}}}\mathrm{dx} \\ $$
Question Number 95212 Answers: 1 Comments: 0
$$\mathrm{solve}\:\mathrm{by}\:\mathrm{Laplace}\:\mathrm{transform} \\ $$$$\mathrm{y}^{''} \:+\mathrm{5y}^{'} \:+\mathrm{2y}\:=\mathrm{x}^{\mathrm{2}} \mathrm{cosx}\:\:\mathrm{with}\:\mathrm{y}\left(\mathrm{o}\right)=\mathrm{1}\:\mathrm{and}\:\mathrm{y}^{'} \left(\mathrm{0}\right)\:=\mathrm{2} \\ $$
Question Number 95211 Answers: 0 Comments: 0
$$\mathrm{solve}\:\mathrm{by}\:\mathrm{Laplace}\:\mathrm{transform} \\ $$$$\left(\mathrm{x}+\mathrm{1}\right)\mathrm{y}^{'} \:−\mathrm{x}^{\mathrm{2}} \mathrm{y}\:=\mathrm{sin}\left(\mathrm{2x}\right) \\ $$
Question Number 95209 Answers: 0 Comments: 0
$$\int\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }\mathrm{dx} \\ $$
Question Number 95208 Answers: 0 Comments: 0
$$\mathrm{i}\backslash\:\int\frac{\mathrm{sinx}}{\mathrm{x}}\mathrm{dx}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{ii}\backslash\:\int\frac{\mathrm{cosx}}{\mathrm{x}}\mathrm{dx} \\ $$$$\mathrm{iii}\backslash\:\int\frac{\mathrm{1}}{\mathrm{lnx}}\mathrm{dx}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{iv}\backslash\:\int\sqrt{\mathrm{1}−\mathrm{k}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \mathrm{x}}\mathrm{dx} \\ $$$$\mathrm{v}\backslash\:\int\sqrt{\mathrm{sinx}}\mathrm{dx}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{vi}\backslash\:\int\mathrm{sin}\left(\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx} \\ $$$$\mathrm{vii}\backslash\:\int\mathrm{cos}\left(\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx}\:\:\:\:\:\:\mathrm{viii}\backslash\:\int\mathrm{xtanxdx} \\ $$$$\mathrm{ix}\backslash\:\int\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}\backslash\int\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \mathrm{dx} \\ $$$$\mathrm{xi}\backslash\:\int\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{5}} }\mathrm{dx}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{xii}\backslash\:\int\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$
Pg 1196 Pg 1197 Pg 1198 Pg 1199 Pg 1200 Pg 1201 Pg 1202 Pg 1203 Pg 1204 Pg 1205
Terms of Service
Privacy Policy
Contact: info@tinkutara.com