Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1201
Question Number 85153 Answers: 1 Comments: 1
$$\int\sqrt{\mathrm{4}\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{4}}\boldsymbol{\mathrm{dx}}\:=\:... \\ $$$$ \\ $$$$ \\ $$
Question Number 85148 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}+{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{3}} +{x}^{\mathrm{7}} }\:{dx} \\ $$
Question Number 85146 Answers: 2 Comments: 1
$$\mathrm{find}\:\mathrm{minimum}\:\&\:\mathrm{maximum}\:\mathrm{value}\: \\ $$$$\mathrm{of}\:\mathrm{function}\: \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\:−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{sin}\:\mathrm{x}−\frac{\mathrm{1}}{\mathrm{2}}\:,\:−\pi\leqslant\mathrm{x}\leqslant\pi \\ $$
Question Number 85142 Answers: 1 Comments: 0
$${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{{n}} \left[{x}^{\mathrm{2}} \right]{dx}\:={n}\left({n}^{\mathrm{2}} −\mathrm{1}\right)−\underset{{k}=\mathrm{1}} {\overset{{n}^{\mathrm{2}} −\mathrm{1}} {\sum}}\sqrt{{k}}\: \\ $$
Question Number 85131 Answers: 0 Comments: 4
$$\mathrm{what}\:\mathrm{procedure}\:\mathrm{will}\:\mathrm{you}\:\mathrm{use}\:\mathrm{to}\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{inverse}\:\mathrm{of} \\ $$$$\:\mathrm{A}\:=\:\begin{pmatrix}{\mathrm{2}}&{\mathrm{1}}&{\mathrm{9}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{1}}\\{\mathrm{3}}&{\mathrm{0}}&{\mathrm{3}}\end{pmatrix} \\ $$
Question Number 85130 Answers: 2 Comments: 0
$$\mathrm{given}\:\mathrm{f}\left(\mathrm{x}\right)=\:\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)\mathrm{sin}\:\mathrm{x}\:+\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\mathrm{cos}\:\mathrm{x} \\ $$$$\mathrm{find}\:\mathrm{masimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{function} \\ $$$$\left[\mathrm{f}\left(\mathrm{x}\right)\right]^{\mathrm{2}} \\ $$
Question Number 85129 Answers: 0 Comments: 2
$$\underset{{x}\rightarrow{e}} {\mathrm{lim}}\:\left[\underset{\mathrm{0}} {\overset{{e}} {\int}}\left(\frac{\mathrm{1}}{{x}}\right){dx}\right]\:=? \\ $$
Question Number 85127 Answers: 1 Comments: 4
$$\mathrm{evaluate}: \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt{{x}}\:\mathrm{ln}\left(\mathrm{sin}\:{x}\right) \\ $$$$ \\ $$
Question Number 85116 Answers: 0 Comments: 1
$$\:\mathrm{Reduce}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{to}\:\mathrm{Clairaut}'\mathrm{s}\:\mathrm{form} \\ $$$$\:\mathrm{and}\:\mathrm{find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:: \\ $$$$\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \boldsymbol{\mathrm{p}}^{\mathrm{2}} +\boldsymbol{\mathrm{yp}}\left(\mathrm{2}\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}\right)+\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\mathrm{0}\:\:\:\:\:\:\left({put}\:\boldsymbol{{y}}=\boldsymbol{{u}}\:{and}\:\boldsymbol{{xy}}=\boldsymbol{{v}}\right) \\ $$$$\: \\ $$
Question Number 85111 Answers: 1 Comments: 4
$$\:\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}}: \\ $$$$\:\bigstar.\left(\mathrm{1}+\mathrm{x}+\mathrm{xy}^{\mathrm{2}} \right)\mathrm{dy}+\left(\mathrm{y}+\mathrm{y}^{\mathrm{3}} \right)\mathrm{dx} \\ $$$$\: \\ $$
Question Number 85105 Answers: 1 Comments: 0
Question Number 85104 Answers: 1 Comments: 2
$$\mathrm{Given}\: \\ $$$$\begin{cases}{\mathrm{x}^{\mathrm{2}} −\mathrm{2xy}−\mathrm{3x}\:=\:−\mathrm{1}}\\{\mathrm{4y}^{\mathrm{2}} −\mathrm{2xy}+\mathrm{6y}\:=\:−\mathrm{1}}\end{cases} \\ $$$$\mathrm{find}\:\mathrm{2y}\:−\:\mathrm{x} \\ $$
Question Number 85103 Answers: 0 Comments: 0
Question Number 85097 Answers: 1 Comments: 0
$$\underset{−\pi} {\overset{\pi} {\int}}\:\mathrm{x}^{\mathrm{2020}} \:\left(\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\right)\:\mathrm{dx}\:=\:\mathrm{8} \\ $$$$\mathrm{find}\:\underset{−\pi} {\overset{\pi} {\int}}\:\mathrm{x}^{\mathrm{2020}} \:\mathrm{cos}\:\mathrm{x}\:\mathrm{dx}\:=\:? \\ $$
Question Number 85091 Answers: 0 Comments: 1
Question Number 85088 Answers: 0 Comments: 1
Question Number 85083 Answers: 0 Comments: 1
$${a}^{\mathrm{3}} −{b}^{\mathrm{3}} =...? \\ $$
Question Number 85074 Answers: 1 Comments: 1
Question Number 85073 Answers: 0 Comments: 1
$${Prove}\:{by}\:{mathematical}\:{induction}\:{that} \\ $$$$\mathrm{2002}^{{n}+\mathrm{2}} +\mathrm{2003}^{\mathrm{2}{n}+\mathrm{1}} \:\:\:\:{is}\:{divisible}\:{by}\:\mathrm{4005} \\ $$
Question Number 85068 Answers: 0 Comments: 3
Question Number 85061 Answers: 1 Comments: 3
$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{x}\:{tan}\mathrm{2}{x}−\mathrm{2}{x}\:{tan}\left({x}\right)}{\left(\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)\right)^{\mathrm{2}} } \\ $$
Question Number 85059 Answers: 1 Comments: 0
Question Number 85057 Answers: 0 Comments: 1
$${find}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}ln}\:\left(\mathrm{sin}\:{x}\mathrm{cos}\:\frac{\mathrm{1}}{{x}}+\mathrm{1}\right)\:{if}\:{it}\:{exits}. \\ $$
Question Number 85050 Answers: 1 Comments: 0
$$\left(\mathrm{x}−\mathrm{4y}+\mathrm{3}\right)\mathrm{dx}\:=\:\left(\mathrm{x}−\mathrm{5y}+\mathrm{4}\right)\mathrm{dy} \\ $$
Question Number 85041 Answers: 0 Comments: 0
Question Number 85036 Answers: 0 Comments: 1
$${If}\:{A}=\begin{bmatrix}{{x}\:\:\:\:{x}\:\:\:{x}\:\:}\\{\underset{\mathrm{2}\:\:} {\mathrm{4}}\:−\underset{\mathrm{3}} {\mathrm{2}}\:\:\:\underset{\mathrm{4}} {\mathrm{1}}}\end{bmatrix}{findX}\:{if}\:{p}\left({A}\right)=\mathrm{3} \\ $$$$ \\ $$$$ \\ $$
Pg 1196 Pg 1197 Pg 1198 Pg 1199 Pg 1200 Pg 1201 Pg 1202 Pg 1203 Pg 1204 Pg 1205
Terms of Service
Privacy Policy
Contact: info@tinkutara.com