Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1201

Question Number 95600    Answers: 1   Comments: 0

solve the differential equation L(d^2 q/dt^2 )+R(dq/dt)+(1/C)q=εcosωt which is in R.L.C circuit with forced oscillation where L is inductance R is resistance C is capacitanace q is charge ε is motion emf t is time

$${solve}\:{the}\:{differential}\:{equation} \\ $$$${L}\frac{{d}^{\mathrm{2}} {q}}{{dt}^{\mathrm{2}} }+{R}\frac{{dq}}{{dt}}+\frac{\mathrm{1}}{{C}}{q}=\varepsilon{cos}\omega{t} \\ $$$${which}\:{is}\:{in}\:{R}.{L}.{C}\:{circuit}\:{with}\:{forced}\:{oscillation} \\ $$$${where}\:{L}\:{is}\:{inductance} \\ $$$${R}\:{is}\:{resistance} \\ $$$${C}\:{is}\:{capacitanace} \\ $$$${q}\:{is}\:{charge} \\ $$$$\varepsilon\:{is}\:{motion}\:{emf} \\ $$$${t}\:{is}\:{time} \\ $$

Question Number 95598    Answers: 0   Comments: 0

If sin^(−1) x_1 +sin^(−1) x_2 +...+sin^(−1) x_(2n) =nπ, then Σ^(2n) _(i, j=1_(i ≠ j) ) x_i x_j =

$$\mathrm{If}\:\:\mathrm{sin}^{−\mathrm{1}} {x}_{\mathrm{1}} +\mathrm{sin}^{−\mathrm{1}} {x}_{\mathrm{2}} +...+\mathrm{sin}^{−\mathrm{1}} {x}_{\mathrm{2}{n}} ={n}\pi, \\ $$$$\mathrm{then}\:\:\:\underset{\underset{{i}\:\neq\:{j}} {{i},\:{j}=\mathrm{1}}} {\overset{\mathrm{2}{n}} {\sum}}\:\:\:{x}_{{i}} \:{x}_{{j}} \:= \\ $$

Question Number 95597    Answers: 0   Comments: 1

The value of cosec^2 (π/7)+cosec^2 ((2π)/7)+cosec^2 ((3π)/7) is

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{cosec}^{\mathrm{2}} \:\frac{\pi}{\mathrm{7}}+\mathrm{cosec}^{\mathrm{2}} \:\frac{\mathrm{2}\pi}{\mathrm{7}}+\mathrm{cosec}^{\mathrm{2}} \:\frac{\mathrm{3}\pi}{\mathrm{7}}\:\mathrm{is} \\ $$

Question Number 95593    Answers: 0   Comments: 2

if f(x) = ((sin x)/((1 + x^2 +x^6 )^2 )) is odd, find ∫_(−3) ^3 f(x) dx

$$\mathrm{if}\:{f}\left({x}\right)\:=\:\frac{\mathrm{sin}\:{x}}{\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \:+{x}^{\mathrm{6}} \right)^{\mathrm{2}} }\:\mathrm{is}\:\mathrm{odd}, \\ $$$$\mathrm{find}\:\underset{−\mathrm{3}} {\overset{\mathrm{3}} {\int}}{f}\left({x}\right)\:{dx} \\ $$

Question Number 95586    Answers: 1   Comments: 1

find ∫ (dx/(x^n (x+1)^m )) m and n integr

$${find}\:\int\:\:\frac{{dx}}{{x}^{{n}} \left({x}+\mathrm{1}\right)^{{m}} }\:\: \\ $$$${m}\:{and}\:{n}\:{integr} \\ $$

Question Number 95585    Answers: 1   Comments: 0

calculate ∫_2 ^(+∞) (dx/((x−1)^4 (x^2 +x+1)^2 ))

$${calculate}\:\int_{\mathrm{2}} ^{+\infty} \:\:\:\frac{{dx}}{\left({x}−\mathrm{1}\right)^{\mathrm{4}} \left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$ \\ $$

Question Number 95584    Answers: 3   Comments: 0

calculate ∫_1 ^(+∞) (dx/(x^3 (2x+1)^4 )) 1)without use of decomposition 2)by use of decomposition

$${calculate}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{dx}}{{x}^{\mathrm{3}} \left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$\left.\mathrm{1}\right){without}\:{use}\:{of}\:{decomposition} \\ $$$$\left.\mathrm{2}\right){by}\:{use}\:{of}\:{decomposition} \\ $$

Question Number 95581    Answers: 0   Comments: 0

∫ln∣cot(x/2)∣dx

$$\int\mathrm{ln}\mid\mathrm{cot}\left(\mathrm{x}/\mathrm{2}\right)\mid\mathrm{dx} \\ $$

Question Number 95578    Answers: 0   Comments: 8

Question Number 95563    Answers: 1   Comments: 0

∫((ax^2 +bx+c)/((x−p)(x−q)(x−r)))dx

$$\int\frac{\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}}{\left(\mathrm{x}−\mathrm{p}\right)\left(\mathrm{x}−\mathrm{q}\right)\left(\mathrm{x}−\mathrm{r}\right)}\mathrm{dx} \\ $$

Question Number 95562    Answers: 1   Comments: 0

show that ∫((sin (x−θ))/(sin x))dx=xcos x−sin θlog sin x

$$\mathrm{show}\:\mathrm{that} \\ $$$$\int\frac{\mathrm{sin}\:\left(\mathrm{x}−\theta\right)}{\mathrm{sin}\:\mathrm{x}}\mathrm{dx}=\mathrm{xcos}\:\mathrm{x}−\mathrm{sin}\:\theta\mathrm{log}\:\mathrm{sin}\:\mathrm{x} \\ $$

Question Number 95560    Answers: 1   Comments: 1

Question Number 95557    Answers: 0   Comments: 0

Question Number 95549    Answers: 3   Comments: 0

∫_(−π) ^π ∣cos^3 x∣dx

$$\int_{−\pi} ^{\pi} \mid{cos}^{\mathrm{3}} {x}\mid{dx} \\ $$

Question Number 95548    Answers: 0   Comments: 2

Question Number 95547    Answers: 2   Comments: 0

∫((2x^3 dx)/(2x^2 −4x+3))=?

$$\int\frac{\mathrm{2}{x}^{\mathrm{3}} {dx}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{3}}=? \\ $$

Question Number 95546    Answers: 2   Comments: 0

∫x^2 (√(a^2 +x^2 ))dx=?

$$\int{x}^{\mathrm{2}} \sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }{dx}=? \\ $$

Question Number 95531    Answers: 0   Comments: 4

((tanx×ctg2x)/(tan^2 x−1))=?

$$\frac{\mathrm{tanx}×\mathrm{ctg2x}}{\mathrm{tan}^{\mathrm{2}} \mathrm{x}−\mathrm{1}}=? \\ $$

Question Number 95524    Answers: 0   Comments: 4

(1/(sin10))−((√3)/(cos10))=?

$$\frac{\mathrm{1}}{\mathrm{sin10}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{cos10}}=? \\ $$

Question Number 95520    Answers: 0   Comments: 0

For 0<x<(π/(6 )), all the values of tan^2 (3x)cos^2 (x)−4tan (3x)sin (2x)+16sin^2 (x) lie in the interval (a). (0,((121)/(36))) (b).(1,((121)/9)) (c). (−1,0) (d). None of these.

$$\mathrm{For}\:\mathrm{0}<\mathrm{x}<\frac{\pi}{\mathrm{6}\:},\:\mathrm{all}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of} \\ $$$$\mathrm{tan}\:^{\mathrm{2}} \left(\mathrm{3x}\right)\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{x}\right)−\mathrm{4tan}\:\left(\mathrm{3x}\right)\mathrm{sin}\:\left(\mathrm{2x}\right)+\mathrm{16sin}\:^{\mathrm{2}} \left(\mathrm{x}\right) \\ $$$$\mathrm{lie}\:\mathrm{in}\:\mathrm{the}\:\mathrm{interval} \\ $$$$\left(\mathrm{a}\right).\:\left(\mathrm{0},\frac{\mathrm{121}}{\mathrm{36}}\right)\:\left(\mathrm{b}\right).\left(\mathrm{1},\frac{\mathrm{121}}{\mathrm{9}}\right)\:\left(\mathrm{c}\right).\:\left(−\mathrm{1},\mathrm{0}\right)\:\left(\mathrm{d}\right).\:\mathrm{None}\:\mathrm{of}\:\mathrm{these}. \\ $$

Question Number 95518    Answers: 0   Comments: 0

Question Number 95515    Answers: 1   Comments: 0

If A+B+C = π, then sin^2 A+sin^2 B+sin^2 C−2 cos A cos B cos C=

$$\mathrm{If}\:{A}+{B}+{C}\:=\:\pi,\:\mathrm{then} \\ $$$$\mathrm{sin}^{\mathrm{2}} {A}+\mathrm{sin}^{\mathrm{2}} {B}+\mathrm{sin}^{\mathrm{2}} {C}−\mathrm{2}\:\mathrm{cos}\:{A}\:\mathrm{cos}\:{B}\:\mathrm{cos}\:{C}= \\ $$

Question Number 95512    Answers: 0   Comments: 3

If in a △ABC, 8R^2 = a^2 +b^2 +c^2 , then the △ABC is

$$\mathrm{If}\:\:\mathrm{in}\:\mathrm{a}\:\bigtriangleup{ABC},\:\mathrm{8}{R}^{\mathrm{2}} =\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} ,\:\mathrm{then} \\ $$$$\mathrm{the}\:\bigtriangleup{ABC}\:\mathrm{is} \\ $$

Question Number 95509    Answers: 2   Comments: 0

find the angle of plane 2x−y+2z=1 and x+3y−2z = 2

$$\mathrm{find}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{plane} \\ $$$$\mathrm{2x}−\mathrm{y}+\mathrm{2z}=\mathrm{1}\:\mathrm{and}\:\mathrm{x}+\mathrm{3y}−\mathrm{2z}\:=\:\mathrm{2} \\ $$

Question Number 95502    Answers: 1   Comments: 3

6 man + 8 woman ⇒working a job in 10 days 26 man + 48 woman ⇒ in 2 days if 15 man + 20 woman ⇒ ?? days

$$\mathrm{6}\:\mathrm{man}\:+\:\mathrm{8}\:\mathrm{woman}\:\Rightarrow\mathrm{working}\:\mathrm{a}\:\mathrm{job}\:\mathrm{in}\:\mathrm{10}\:\mathrm{days} \\ $$$$\mathrm{26}\:\mathrm{man}\:+\:\mathrm{48}\:\mathrm{woman}\:\Rightarrow\:\mathrm{in}\:\mathrm{2}\:\mathrm{days} \\ $$$$\mathrm{if}\:\mathrm{15}\:\mathrm{man}\:+\:\mathrm{20}\:\mathrm{woman}\:\Rightarrow\:??\:\mathrm{days} \\ $$

Question Number 95495    Answers: 2   Comments: 0

3cos^2 x − 3cos x sin x + 2sin x = 1 x ∈ [ 0, 2π ]

$$\mathrm{3cos}\:^{\mathrm{2}} {x}\:−\:\mathrm{3cos}\:{x}\:\mathrm{sin}\:{x}\:+\:\mathrm{2sin}\:{x}\:=\:\mathrm{1} \\ $$$${x}\:\in\:\left[\:\mathrm{0},\:\mathrm{2}\pi\:\right]\: \\ $$

  Pg 1196      Pg 1197      Pg 1198      Pg 1199      Pg 1200      Pg 1201      Pg 1202      Pg 1203      Pg 1204      Pg 1205   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com