Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1201
Question Number 94960 Answers: 2 Comments: 0
Question Number 94956 Answers: 1 Comments: 7
Question Number 94955 Answers: 0 Comments: 0
$${Prove}\:{by}\:{set}\:{theory}\:{or}\:{otherwise} \\ $$$$\:\:\mathrm{lcm}\left(\:\mathrm{gcd}\left(\mathrm{x},\mathrm{y}\right),\mathrm{gcd}\left(\mathrm{y},\mathrm{z}\right),\mathrm{gcd}\left(\mathrm{z},\mathrm{x}\right)\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\:\mathrm{gcd}\left(\:\mathrm{lcm}\left(\mathrm{x},\mathrm{y}\right),\mathrm{lcm}\left(\mathrm{y},\mathrm{z}\right),\mathrm{lcm}\left(\mathrm{z},\mathrm{x}\right)\:\right) \\ $$$$\:\:{Or}\:{give}\:{a}\:{counter}\:{example}. \\ $$
Question Number 94954 Answers: 1 Comments: 0
$$\:\:\boldsymbol{\mathrm{For}}\:\boldsymbol{\mathrm{any}}\:\boldsymbol{\mathrm{curve}},\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}: \\ $$$$\:\:\:\left(\frac{\mathrm{d}^{\mathrm{2}} \mathrm{x}}{\mathrm{ds}^{\mathrm{2}} }\right)^{\mathrm{2}} +\left(\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\right)^{\mathrm{2}} =\:\frac{\mathrm{1}}{\rho^{\mathrm{2}} } \\ $$$$\:\: \\ $$
Question Number 94945 Answers: 0 Comments: 2
$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{make}\:\mathrm{p}\:\mathrm{the}\:\mathrm{subject} \\ $$$$\mathrm{of}\:\mathrm{equation}\:{q}\:=\:\frac{{m}}{\sqrt{{p}}\:}\:+\:\frac{{p}^{\mathrm{2}} }{{m}}\: \\ $$
Question Number 94934 Answers: 3 Comments: 1
Question Number 94931 Answers: 1 Comments: 0
$$\mathrm{f}\:\mathrm{is}\:\mathrm{a}\:\mathrm{2}\left(×\right)\:\mathrm{derivable}\:\mathrm{function}\:\:\mathrm{and}\:\mathrm{L}\:\mathrm{laplace}\:\mathrm{transfom} \\ $$$$\mathrm{determine}\:\mathrm{L}\left(\mathrm{f}^{'} \right)\:\mathrm{a}\:\mathrm{L}\left(\mathrm{f}^{''} \right) \\ $$
Question Number 94925 Answers: 1 Comments: 2
Question Number 94923 Answers: 1 Comments: 0
Question Number 94922 Answers: 1 Comments: 0
Question Number 94921 Answers: 2 Comments: 0
Question Number 94915 Answers: 2 Comments: 0
$$\mathrm{We}\:\mathrm{suppose}\:\mathrm{in}\:\mathbb{R}^{\mathrm{2}} \:\mathrm{the}\:\mathrm{base}\:\left(\overset{\rightarrow} {{i}};\overset{\rightarrow} {{j}}\right). \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{these}\:\mathrm{vectors}: \\ $$$$\overset{\rightarrow} {\mathrm{u}}=\left(\mathrm{m}^{\mathrm{2}} −\mathrm{m}\right)\overset{\rightarrow} {{i}}+\mathrm{2m}\overset{\rightarrow} {{j}}\:;\: \\ $$$$\overset{\rightarrow} {\mathrm{v}}=\left(\mathrm{m}−\mathrm{1}\right)\overset{\rightarrow} {{i}}+\left(\mathrm{m}+\mathrm{1}\right)\overset{\rightarrow} {{j}}\:\mathrm{m}\:\in\:\mathbb{R}^{\ast} \\ $$$$\left.\mathrm{1}\right)\mathrm{Determinate}\:\mathrm{m}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\:\mathrm{system} \\ $$$$\left(\overset{\rightarrow} {\mathrm{u}};\overset{\rightarrow} {\mathrm{v}}\right)\:\mathrm{is}\:\mathrm{linear}\:\mathrm{dependant}\left(\:\mathrm{det}\left(\overset{\rightarrow} {\mathrm{u}};\overset{\rightarrow} {\mathrm{v}}\right)=\mathrm{0}\right) \\ $$$$ \\ $$
Question Number 94914 Answers: 1 Comments: 0
Question Number 94910 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{in}\:\left[\mathrm{0};\mathrm{2}\pi\right] \\ $$$$\mathrm{2sin}\left(\mathrm{4}{x}−\frac{\pi}{\mathrm{6}}\right)\geqslant\mathrm{1} \\ $$$$\mathrm{Please}\:\mathrm{sirs}... \\ $$
Question Number 94907 Answers: 2 Comments: 0
$$\left.\mathrm{1}\right)\mathrm{calculate}\:\int\:\:\frac{\mathrm{dx}}{\left(\mathrm{2}+\sqrt{\mathrm{x}−\mathrm{1}}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\int_{\mathrm{2}} ^{+\infty} \:\:\:\frac{\mathrm{dx}}{\left(\mathrm{2}+\sqrt{\mathrm{x}−\mathrm{1}}\right)^{\mathrm{2}} } \\ $$
Question Number 94906 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{4}} } \\ $$
Question Number 94905 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\:\int_{\mathrm{3}} ^{+\infty} \:\:\:\:\:\frac{\mathrm{xdx}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} } \\ $$
Question Number 94904 Answers: 0 Comments: 0
$$\mathrm{solve}\:\mathrm{y}^{''} \:+\mathrm{x}^{\mathrm{2}} \mathrm{y}\:=\mathrm{xsin}\left(\mathrm{2x}\right) \\ $$
Question Number 94903 Answers: 2 Comments: 0
$$\mathrm{solve}\:\:\mathrm{y}^{''} \:+\mathrm{2y}^{'} \:+\mathrm{y}\:=\mathrm{xe}^{−\mathrm{x}} \\ $$
Question Number 94882 Answers: 1 Comments: 0
$$\mathrm{solve}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\mathrm{tan}\:\theta+\mathrm{tan}\:\mathrm{2}\theta+\mathrm{tan}\:\mathrm{3}\theta\:=\: \\ $$$$\mathrm{tan}\:\theta.\mathrm{tan}\:\mathrm{2}\theta.\mathrm{tan}\:\mathrm{3}\theta\: \\ $$
Question Number 94948 Answers: 1 Comments: 3
$$\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}\:{ln}\:\left(\mathrm{3}\right)}\:} {xe}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} \:{dx}\:=\:.\:.\:. \\ $$
Question Number 94877 Answers: 1 Comments: 2
$$\mathrm{Solve}\:\mathrm{for}\:{x}\:\mathrm{in}\:\left[\mathrm{0};\mathrm{2}\pi\right]: \\ $$$$\mathrm{sin}\left(\mathrm{4}{x}−\frac{\pi}{\mathrm{6}}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Question Number 94874 Answers: 1 Comments: 1
Question Number 94868 Answers: 0 Comments: 5
Question Number 94862 Answers: 0 Comments: 4
$$\mathrm{Show}\:\mathrm{that}\: \\ $$$$\mathrm{cos}^{\mathrm{6}} {x}+{sin}^{\mathrm{6}} {x}=\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{5}+\mathrm{3}{cos}\left(\mathrm{4}{x}\right)\right) \\ $$$$\mathrm{By}\:\mathrm{using}\:\mathrm{the}\:\mathrm{formula}: \\ $$$$\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} =\left(\mathrm{a}+\mathrm{b}\right)\left(\mathrm{a}^{\mathrm{2}} −\mathrm{ab}+\mathrm{b}^{\mathrm{2}} \right) \\ $$
Question Number 94861 Answers: 0 Comments: 1
$$\mathrm{Show}\:\mathrm{that} \\ $$$$\left(\mathrm{g}\circ\mathrm{f}\right)'\left(\mathrm{x}\right)=\mathrm{g}'\left(\mathrm{f}\left(\mathrm{x}\right)\right)\centerdot\mathrm{f}'\left(\mathrm{x}\right) \\ $$
Pg 1196 Pg 1197 Pg 1198 Pg 1199 Pg 1200 Pg 1201 Pg 1202 Pg 1203 Pg 1204 Pg 1205
Terms of Service
Privacy Policy
Contact: info@tinkutara.com