Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1200
Question Number 94662 Answers: 1 Comments: 3
$$\int\:\sqrt{\mathrm{tan}\:\mathrm{x}+\mathrm{cot}\:\mathrm{x}}\:\mathrm{dx}\:=\:? \\ $$
Question Number 94661 Answers: 0 Comments: 0
$${calculate}\:\Sigma\:{a}_{{n}} {x}^{{n}} \:{if}\:{a}_{{n}} \:{verify} \\ $$$${a}_{{n}+\mathrm{1}} ={a}_{{n}} \:+{a}_{{n}−\mathrm{1}} \\ $$
Question Number 94660 Answers: 0 Comments: 0
$${u}_{{n}} =\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)\left(\mathrm{1}+\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\right)...\left(\mathrm{1}+\frac{{n}}{{n}^{\mathrm{2}} }\right) \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} {u}_{{n}} \\ $$
Question Number 94659 Answers: 1 Comments: 0
$${calculate}\:{lim}_{{n}\rightarrow+\infty} \int_{\mathrm{0}} ^{\infty} \:\left(\mathrm{1}−\frac{{t}}{{n}}\right)^{{n}} \:{e}^{−\mathrm{3}{t}} \:{dt} \\ $$
Question Number 94658 Answers: 0 Comments: 0
$${find}\:{lim}_{{n}\rightarrow+\infty} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\left(\mathrm{1}−\frac{{t}}{{n}}\right)^{{n}} \:{arctan}\left(\mathrm{1}+{nt}\right){dt} \\ $$
Question Number 94657 Answers: 0 Comments: 0
$${let}\:{u}_{{n}} \:=\sum_{{k}=\mathrm{1}} ^{{n}} \frac{\mathrm{1}}{\left(^{{p}} \sqrt{{k}}\right)} \\ $$$${detetmine}\:{a}\:{equivalent}\:{of}\:{u}_{{n}} \\ $$$$\left({n}\rightarrow+\infty\right) \\ $$$$ \\ $$
Question Number 94655 Answers: 0 Comments: 0
$${solve}\:\left(\mathrm{1}+{nz}\right)^{{p}} +\left(\mathrm{1}−{nz}\right)^{{p}} \:=\mathrm{0} \\ $$$${n}\:{and}\:{p}\:{ontegr}\:{natural} \\ $$
Question Number 94654 Answers: 0 Comments: 0
$${prove}\:{that}\:\sum_{{i}=\mathrm{1}} ^{{n}} \:{x}_{{i}} {y}_{{i}} \leqslant\left(\sum_{{i}=\mathrm{1}} ^{{n}} {x}_{{i}} ^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\sum_{{i}=\mathrm{1}} ^{{n}} {y}_{{i}} ^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${x}_{{i}} \:{and}\:{y}_{{i}} \:{reals}\:\geqslant\mathrm{0} \\ $$
Question Number 94652 Answers: 0 Comments: 0
$${find}\:{lim}_{\xi\rightarrow\mathrm{0}} \:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{sin}\left(\xi{x}\right)}{\sqrt{\mathrm{1}+\xi{x}^{\mathrm{2}} }−\sqrt{\mathrm{1}−\xi{x}^{\mathrm{2}} }}{dx} \\ $$
Question Number 94650 Answers: 1 Comments: 1
$${let}\:{f}\left({x}\right)\:=\left({x}+\mathrm{1}\right)^{\mathrm{9}} \:{e}^{−\mathrm{3}{x}} \\ $$$${calculstr}\:{f}^{\left(\mathrm{7}\right)} \left(\mathrm{0}\right)\:{and}\:{f}^{\left(\mathrm{5}\right)} \left(\mathrm{1}\right) \\ $$
Question Number 94649 Answers: 0 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}} {lnx}\:{dx} \\ $$
Question Number 94648 Answers: 0 Comments: 0
$${find}\:{a}\:{equivslent}\:{for} \\ $$$${u}_{{n}} =\mathrm{1}\:+\mathrm{2}^{\alpha} \:+\mathrm{3}^{\alpha} \:+....+{n}^{\alpha} \\ $$$${n}\rightarrow+\infty\:\:\:\:\:\:\:\:\:\left(\alpha>\mathrm{0}\right) \\ $$
Question Number 94635 Answers: 1 Comments: 0
$$\mathrm{A}\:\mathrm{father}\:\mathrm{with}\:\mathrm{8}\:\mathrm{children}\:\mathrm{takes}\:\mathrm{them} \\ $$$$\mathrm{3}\:\mathrm{at}\:\mathrm{a}\:\mathrm{time}\:\mathrm{to}\:\mathrm{the}\:\mathrm{Gardens},\:\mathrm{as}\:\mathrm{often}\:\mathrm{as} \\ $$$$\mathrm{he}\:\mathrm{can}\:\mathrm{without}\:\mathrm{taking}\:\mathrm{the}\:\mathrm{same}\:\mathrm{3}\:\mathrm{children} \\ $$$$\mathrm{together}\:\mathrm{more}\:\mathrm{than}\:\mathrm{once}.\:\mathrm{The}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{times}\:\mathrm{each}\:\mathrm{child}\:\mathrm{will}\:\mathrm{go}\:\mathrm{to}\:\mathrm{the}\:\mathrm{garden} \\ $$$$\mathrm{is} \\ $$
Question Number 94632 Answers: 0 Comments: 1
$$\mathrm{The}\:\mathrm{coefficient}\:\mathrm{of}\:{x}^{{m}} \:\mathrm{and}\:{x}^{{n}} \left({m},\:{n}\:\in\:{N}\right)\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}+{x}\right)^{{m}+{n}} \:\mathrm{are} \\ $$
Question Number 94629 Answers: 1 Comments: 0
$$\mathrm{In}\:\bigtriangleup{ABC},\:{a}=\sqrt{\mathrm{3}}+\mathrm{1},\:{B}=\mathrm{30}°,\:{C}=\mathrm{45}°, \\ $$$$\mathrm{then}\:{c}\:=\:\_\_\_\_. \\ $$
Question Number 94628 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{perimeter}\:\mathrm{of}\:\mathrm{a}\:\bigtriangleup\:{ABC}\:\mathrm{is}\:\mathrm{6}\:\mathrm{times} \\ $$$$\mathrm{the}\:\mathrm{arithmetic}\:\mathrm{mean}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sines}\:\mathrm{of} \\ $$$$\mathrm{its}\:\mathrm{angles}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{side}\:{a}\:\mathrm{is}\:\:\mathrm{1},\:\mathrm{then}\:\mathrm{the} \\ $$$$\mathrm{angle}\:{A}\:\:\mathrm{is} \\ $$
Question Number 94625 Answers: 0 Comments: 3
$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\mathrm{ln}\:\left(\Gamma\left({x}\right)\:{dx}\:=?\right. \\ $$$${note}\:\Gamma\left({x}\right)\::\mathrm{Gamma}\:\mathrm{function} \\ $$
Question Number 94622 Answers: 0 Comments: 0
Question Number 94616 Answers: 1 Comments: 0
$${S}=\sqrt{\frac{{f}\overset{\hat { }\mathrm{2}} {{x}}}{{n}}−\left(\frac{{fx}}{{n}}\overset{\hat { }\mathrm{2}} {\right)}} \\ $$
Question Number 94609 Answers: 2 Comments: 0
$$\int\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\sqrt{{x}+\mathrm{1}}+\sqrt{\mathrm{2}{x}+\mathrm{3}}}{dx} \\ $$
Question Number 94613 Answers: 1 Comments: 3
Question Number 94603 Answers: 1 Comments: 1
$$\mathrm{List}\:\mathrm{the}\:\mathrm{elements}\:\mathrm{in}\: \\ $$$${C}=\left\{{x}:{x}\:\mathrm{is}\:\mathrm{an}\:{x}^{\mathrm{2}} \leqslant\mathrm{4},\:\mathrm{integer}\right\} \\ $$
Question Number 94602 Answers: 1 Comments: 0
Question Number 94601 Answers: 1 Comments: 0
Question Number 94589 Answers: 0 Comments: 2
$${covert}\:{the}\:{point}\left({p},\theta,\varphi\right)=\left[\mathrm{4}\sqrt{\mathrm{3}},\frac{\pi}{\mathrm{6}},\frac{\pi}{\mathrm{3}}\right]\: \\ $$$${to}\:{cartesian}\:{coordinates}. \\ $$
Question Number 94581 Answers: 0 Comments: 2
Pg 1195 Pg 1196 Pg 1197 Pg 1198 Pg 1199 Pg 1200 Pg 1201 Pg 1202 Pg 1203 Pg 1204
Terms of Service
Privacy Policy
Contact: info@tinkutara.com