Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 12

Question Number 223908    Answers: 1   Comments: 0

Question Number 223901    Answers: 1   Comments: 2

Question Number 223889    Answers: 0   Comments: 2

Question Number 223887    Answers: 0   Comments: 2

Question Number 223881    Answers: 2   Comments: 0

Question Number 223865    Answers: 1   Comments: 1

Question Number 223858    Answers: 1   Comments: 0

Question Number 223851    Answers: 1   Comments: 0

Question Number 223847    Answers: 3   Comments: 1

Question Number 223839    Answers: 0   Comments: 0

∫_0 ^( ∞) [StruveH_(−(1/2)) ^^^ (z)−BesselY_(−(1/2)) (z)] dz=??

$$\int_{\mathrm{0}} ^{\:\infty} \:\:\left[\mathrm{Struve}\boldsymbol{\mathrm{H}}_{−\frac{\mathrm{1}}{\mathrm{2}}} ^{\:^{\:^{\:} } } \left({z}\right)−\mathrm{Bessel}{Y}_{−\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)\right]\:\mathrm{d}{z}=?? \\ $$

Question Number 223836    Answers: 1   Comments: 0

Question Number 223826    Answers: 2   Comments: 1

Question Number 223823    Answers: 3   Comments: 0

(√(4x+1))+(√(3x−2))=1 x=?

$$\sqrt{\mathrm{4}{x}+\mathrm{1}}+\sqrt{\mathrm{3}{x}−\mathrm{2}}=\mathrm{1} \\ $$$${x}=? \\ $$

Question Number 223822    Answers: 2   Comments: 0

(((4/3))^(4/3) ) Rewrite in simplest radical form

$$\left(\left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} \right) \\ $$$$\:{Rewrite}\:{in}\:{simplest}\:{radical}\:{form} \\ $$

Question Number 223821    Answers: 0   Comments: 0

lim_(ν→α) ((J_(−ν−(1/2)) (z)+e^(iπν) ∙Y_(ν+(1/2)) (z))/(Y_(−ν−(1/2)) (z)−e^(iπν) ∙J_(ν+(1/2)) (z)))=?? α∈Z

$$\underset{\nu\rightarrow\alpha} {\mathrm{lim}}\:\frac{{J}_{−\nu−\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)+{e}^{\boldsymbol{{i}}\pi\nu} \centerdot{Y}_{\nu+\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)}{{Y}_{−\nu−\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)−{e}^{\boldsymbol{{i}}\pi\nu} \centerdot{J}_{\nu+\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)}=?? \\ $$$$\alpha\in\mathbb{Z}\: \\ $$

Question Number 223812    Answers: 1   Comments: 1

Question Number 223804    Answers: 0   Comments: 3

Question Number 223801    Answers: 0   Comments: 1

sorry i mean p_h ∈P (prime set) lim_(h→∞) (p_(h+1) /p_h )=??

$$\mathrm{sorry}\:\:\mathrm{i}\:\mathrm{mean}\:{p}_{{h}} \in\mathbb{P}\:\left(\mathrm{prime}\:\mathrm{set}\right) \\ $$$$\underset{{h}\rightarrow\infty} {\mathrm{lim}}\:\frac{{p}_{{h}+\mathrm{1}} }{{p}_{{h}} }=?? \\ $$

Question Number 223800    Answers: 1   Comments: 0

Given f(x)= ((x^2 +14x+40)/(g(x)))−43 h(x)= ((g(x)+51)/(x+4)) m(x)= ((h(x)−9)/(x−2)) , x≠2 m(2)= 2043. If f(x) divided by x^2 +8x−20 gives remainder is M(x)=ax+b then the value of M(98)=?

$$\:\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{14x}+\mathrm{40}}{\mathrm{g}\left(\mathrm{x}\right)}−\mathrm{43} \\ $$$$\:\mathrm{h}\left(\mathrm{x}\right)=\:\frac{\mathrm{g}\left(\mathrm{x}\right)+\mathrm{51}}{\mathrm{x}+\mathrm{4}} \\ $$$$\:\mathrm{m}\left(\mathrm{x}\right)=\:\frac{\mathrm{h}\left(\mathrm{x}\right)−\mathrm{9}}{\mathrm{x}−\mathrm{2}}\:,\:\mathrm{x}\neq\mathrm{2} \\ $$$$\:\mathrm{m}\left(\mathrm{2}\right)=\:\mathrm{2043}.\: \\ $$$$\:\mathrm{If}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{divided}\:\mathrm{by}\:\mathrm{x}^{\mathrm{2}} +\mathrm{8x}−\mathrm{20}\: \\ $$$$\:\mathrm{gives}\:\mathrm{remainder}\:\mathrm{is}\:\mathrm{M}\left(\mathrm{x}\right)=\mathrm{ax}+\mathrm{b} \\ $$$$\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{M}\left(\mathrm{98}\right)=?\: \\ $$

Question Number 223786    Answers: 0   Comments: 4

Evaluate ; ∫ (√( tan x)) dx , Using feynman′s trick

$$ \\ $$$$\:\:\:\:\boldsymbol{\mathrm{Evaluate}}\:;\:\int\:\sqrt{\:\boldsymbol{\mathrm{tan}}\:\boldsymbol{{x}}}\:\boldsymbol{\mathrm{d}{x}}\:,\:\boldsymbol{\mathrm{Using}}\:\boldsymbol{\mathrm{feynman}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{trick}} \\ $$$$ \\ $$

Question Number 223783    Answers: 2   Comments: 1

Question Number 223779    Answers: 1   Comments: 0

Question Number 223778    Answers: 1   Comments: 0

lim_(N→∞) (p_(N+1) /p_N )=??? , p_1 =2 , p_2 =3 ,p_3 =5 ....

$$\underset{{N}\rightarrow\infty} {\mathrm{lim}}\:\frac{{p}_{{N}+\mathrm{1}} }{{p}_{{N}} }=???\:\:,\:{p}_{\mathrm{1}} =\mathrm{2}\:,\:{p}_{\mathrm{2}} =\mathrm{3}\:,{p}_{\mathrm{3}} =\mathrm{5}\:.... \\ $$

Question Number 223741    Answers: 2   Comments: 1

Question Number 223735    Answers: 0   Comments: 0

for all n ∈ Z , Show that τ ( ϕ ( n )) ≥ ϕ (τ (n ))

$$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{all}}\:\:{n}\:\in\:\mathbb{Z}\:, \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{Show}}\:\boldsymbol{\mathrm{that}}\:\tau\:\left(\:\varphi\:\left(\:{n}\:\right)\right)\:\geqslant\:\varphi\:\left(\tau\:\left({n}\:\right)\right) \\ $$$$ \\ $$

Question Number 223734    Answers: 1   Comments: 0

  Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12      Pg 13      Pg 14      Pg 15      Pg 16   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com