Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 12
Question Number 221770 Answers: 0 Comments: 0
$$\mathrm{Prove}:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{arcsin}{x}}{\mathrm{1}+{x}^{\mathrm{4}} }{dx}=\frac{\sqrt{\mathrm{2}}\pi^{\mathrm{2}} }{\mathrm{16}}−\frac{\sqrt{\mathrm{2}}\pi}{\mathrm{8}}\mathrm{ln}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)+\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)}\mid{z}_{\mathrm{0}} \mid^{\mathrm{2}{n}+\mathrm{1}} \mathrm{sin}\left(\frac{\pi}{\mathrm{4}}−\left(\mathrm{2}{n}+\mathrm{1}\right)\beta\right) \\ $$
Question Number 221769 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\pi} \frac{{a}}{{a}−\mathrm{cos}^{\mathrm{2}{n}} {x}}{dx}=?,{a}>\mathrm{1} \\ $$$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{2}}{\mathrm{2}−\mathrm{cos}^{\mathrm{4}} {x}}{dx}=? \\ $$$$\underset{{m}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{cos}^{\mathrm{2}{n}} \left(\mathrm{2}{mx}\right)}{{a}−\mathrm{cos}^{\mathrm{2}{n}} {x}}{dx}=?,{a}>\mathrm{1},{n}\in\mathbb{N}^{+} \\ $$
Question Number 221760 Answers: 1 Comments: 0
Question Number 221754 Answers: 1 Comments: 0
$$\left.\sqrt[{\sqrt[{\sqrt[{\:\mathrm{3}^{\mathrm{4}^{\mathrm{0}^{\mathrm{4}^{\mathrm{3}} } } } }]{\mathrm{27}}}]{\mathrm{64}}}]{\mathrm{81}}\right)^{\sqrt{\mathrm{4}}} \\ $$
Question Number 221733 Answers: 0 Comments: 19
Question Number 221721 Answers: 2 Comments: 0
Question Number 221707 Answers: 1 Comments: 13
Question Number 221697 Answers: 2 Comments: 0
$${Is}\:\sqrt{{i}}\:{an}\:{imaginary}\:{number}\:\left({i}=\sqrt{−\mathrm{1}}\right)\:{answer}\:{with}\:{logic} \\ $$
Question Number 221686 Answers: 3 Comments: 2
Question Number 221668 Answers: 0 Comments: 0
Question Number 221663 Answers: 0 Comments: 3
$$\mathrm{Prove}:\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{k}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−{x}^{{k}} \right){dx}=\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{23}}}\centerdot\frac{\mathrm{sinh}\frac{\sqrt{\mathrm{23}}\pi}{\mathrm{6}}}{\mathrm{2}\:\mathrm{cosh}\frac{\sqrt{\mathrm{23}}\pi}{\mathrm{3}}−\mathrm{1}} \\ $$
Question Number 221661 Answers: 1 Comments: 1
Question Number 221647 Answers: 0 Comments: 1
$${solve}\:{for}\:{x}. \\ $$$${x}^{\mathrm{1}} \:+\:{x}^{\mathrm{2}} \:+\:{x}^{\mathrm{3}} \:\:=\:\:\mathrm{4096} \\ $$
Question Number 221638 Answers: 1 Comments: 0
Question Number 221637 Answers: 1 Comments: 0
Question Number 221626 Answers: 3 Comments: 0
Question Number 221620 Answers: 1 Comments: 0
$${Solve}\:{for}\:{x} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{7}{x}}=\sqrt{{x}}\left[{x}\neq\mathrm{0}\right] \\ $$
Question Number 221618 Answers: 3 Comments: 0
$${solve}\:{for}\:{x} \\ $$$$\mathrm{2}^{{x}} +\mathrm{4}^{{x}} =\mathrm{8}^{{x}} \\ $$
Question Number 221669 Answers: 2 Comments: 3
Question Number 221601 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\:\frac{{sin}\:\mathrm{2}{x}}{\mathrm{1}\:+\:{sin}\:\mathrm{3}{x}}\:{dx} \\ $$$$ \\ $$
Question Number 221592 Answers: 2 Comments: 0
Question Number 221588 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\int\:\frac{\mathrm{8}{t}\:−\:\mathrm{8}{t}^{\:\mathrm{3}} }{{t}^{\:\mathrm{6}} \:+\:\mathrm{6}{t}^{\mathrm{5}} \:+\:\mathrm{3}{t}^{\:\mathrm{4}} \:−\:\mathrm{20}{t}^{\mathrm{3}} \:+\:\mathrm{3}{t}^{\mathrm{2}} \:+\:\mathrm{6}{t}\:+\:\mathrm{1}}\:{dt}\:\:\:\: \\ $$$$ \\ $$
Question Number 221587 Answers: 1 Comments: 0
$$\int_{\:\mathrm{2}} ^{\:\mathrm{3}} \:\frac{\mathrm{tan}^{−\:\mathrm{1}} \left(\mathrm{x}\right)}{\mathrm{1}\:\:−\:\:\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$
Question Number 221586 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\:\:\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{1}\:+\:\mathrm{3}{x}\:}\:{dx} \\ $$$$ \\ $$
Question Number 221585 Answers: 6 Comments: 1
$${solve}\:{for}\:{x}\:\in{R} \\ $$$$\left({x}^{\mathrm{3}} −\mathrm{6}\right)^{\mathrm{3}} ={x}+\mathrm{6} \\ $$
Question Number 221583 Answers: 1 Comments: 0
Pg 7 Pg 8 Pg 9 Pg 10 Pg 11 Pg 12 Pg 13 Pg 14 Pg 15 Pg 16
Terms of Service
Privacy Policy
Contact: info@tinkutara.com