Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 12

Question Number 224082    Answers: 0   Comments: 1

Question Number 224081    Answers: 1   Comments: 1

Question Number 224056    Answers: 1   Comments: 1

ABC is a triangle D is a point on AC such that AD:DC=3:2 If△ABC=40u^2 △BDC=?? please help

$${ABC}\:{is}\:{a}\:{triangle} \\ $$$${D}\:{is}\:{a}\:{point}\:{on}\:{AC}\:{such}\:{that} \\ $$$${AD}:{DC}=\mathrm{3}:\mathrm{2} \\ $$$${If}\bigtriangleup{ABC}=\mathrm{40}{u}^{\mathrm{2}} \\ $$$$\bigtriangleup{BDC}=?? \\ $$$${please}\:{help} \\ $$

Question Number 224049    Answers: 1   Comments: 0

Question Number 224043    Answers: 2   Comments: 0

f(x)=((√(x−5)))^0 Dom_f =?

$${f}\left({x}\right)=\left(\sqrt{{x}−\mathrm{5}}\right)^{\mathrm{0}} \\ $$$${Dom}_{{f}} =? \\ $$

Question Number 224042    Answers: 1   Comments: 0

Question Number 224041    Answers: 1   Comments: 0

Question Number 224036    Answers: 0   Comments: 0

(dy/dx)=((y^6 −2x^2 )/(2xy^5 +x^2 y^2 ))

$$\:\frac{{dy}}{{dx}}=\frac{{y}^{\mathrm{6}} −\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{2}{xy}^{\mathrm{5}} +{x}^{\mathrm{2}} {y}^{\mathrm{2}} } \\ $$

Question Number 224034    Answers: 3   Comments: 0

x^3 +(1/x^3 )=18(√3) .Find the value of x.

$$\mathrm{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }=\mathrm{18}\sqrt{\mathrm{3}}\:.\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}. \\ $$

Question Number 224033    Answers: 0   Comments: 0

HAPPY INDEPENDENCE DAY!

$${HAPPY}\:{INDEPENDENCE} \\ $$$${DAY}! \\ $$$$ \\ $$

Question Number 224030    Answers: 1   Comments: 0

Question Number 224029    Answers: 2   Comments: 0

Question Number 224028    Answers: 1   Comments: 0

Question Number 224025    Answers: 0   Comments: 0

Resuelve la ecuacio^ n diferencial [4x^3 y − (e^(xy) /x) + y ln(x) + x ((x − 4))^(1/3) ]dx + [x^4 − (e^(xy) /y) + x ln(x) − x]dy Help ....

$${Resuelve}\:{la}\:{ecuaci}\acute {{o}n}\:{diferencial} \\ $$$$\left[\mathrm{4}{x}^{\mathrm{3}} {y}\:−\:\frac{{e}^{{xy}} }{{x}}\:+\:{y}\:\mathrm{ln}\left({x}\right)\:+\:{x}\:\sqrt[{\mathrm{3}}]{{x}\:−\:\mathrm{4}}\right]{dx}\:+\:\left[{x}^{\mathrm{4}} −\:\frac{{e}^{{xy}} }{{y}}\:+\:{x}\:\mathrm{ln}\left({x}\right)\:−\:{x}\right]{dy} \\ $$$${Help}\:.... \\ $$

Question Number 224018    Answers: 2   Comments: 0

x ≠ y λ ≥ 1 { ((x + λ^2 = (y − λ)^2 )),((y + λ^2 = (x − λ)^2 )) :} Find: (((x^2 + y^2 )/(4λ^2 − 1)))^(2025) = ?

$$\mathrm{x}\:\neq\:\mathrm{y} \\ $$$$\lambda\:\geqslant\:\mathrm{1} \\ $$$$\begin{cases}{\mathrm{x}\:+\:\lambda^{\mathrm{2}} \:=\:\left(\mathrm{y}\:−\:\lambda\right)^{\mathrm{2}} }\\{\mathrm{y}\:+\:\lambda^{\mathrm{2}} \:=\:\left(\mathrm{x}\:−\:\lambda\right)^{\mathrm{2}} }\end{cases} \\ $$$$\mathrm{Find}:\:\:\:\left(\frac{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} }{\mathrm{4}\lambda^{\mathrm{2}} \:−\:\mathrm{1}}\right)^{\mathrm{2025}} =\:\:? \\ $$

Question Number 224017    Answers: 0   Comments: 0

x,y,z>0 xy+yz+zx+2xyz=1 prove that: (√(1−x^2 )) + (√(1−y^2 )) + (√(1−z^2 )) ≤ ((3 (√3))/2)

$$\mathrm{x},\mathrm{y},\mathrm{z}>\mathrm{0} \\ $$$$\mathrm{xy}+\mathrm{yz}+\mathrm{zx}+\mathrm{2xyz}=\mathrm{1} \\ $$$$\mathrm{prove}\:\mathrm{that}: \\ $$$$\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{1}−\mathrm{y}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{1}−\mathrm{z}^{\mathrm{2}} }\:\leqslant\:\frac{\mathrm{3}\:\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$

Question Number 224016    Answers: 0   Comments: 0

a,b,c>0 a+b+c+2=abc prove that: (1/( (√(7+a)))) + (1/( (√(7+b)))) + (1/( (√(7+c)))) ≤ 1

$$\mathrm{a},\mathrm{b},\mathrm{c}>\mathrm{0} \\ $$$$\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{2}=\mathrm{abc} \\ $$$$\mathrm{prove}\:\mathrm{that}:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{7}+\mathrm{a}}}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{7}+\mathrm{b}}}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{7}+\mathrm{c}}}\:\leqslant\:\mathrm{1} \\ $$

Question Number 224015    Answers: 0   Comments: 0

a,b,c>0 a+b+c+2=abc prove that: (√a) + (√b) + (√c) ≤ (3/2) (√(abc))

$$\mathrm{a},\mathrm{b},\mathrm{c}>\mathrm{0} \\ $$$$\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{2}=\mathrm{abc} \\ $$$$\mathrm{prove}\:\mathrm{that}:\:\:\:\sqrt{\mathrm{a}}\:+\:\sqrt{\mathrm{b}}\:+\:\sqrt{\mathrm{c}}\:\leqslant\:\frac{\mathrm{3}}{\mathrm{2}}\:\sqrt{\mathrm{abc}} \\ $$

Question Number 224013    Answers: 1   Comments: 1

Question Number 223995    Answers: 1   Comments: 0

Question Number 223990    Answers: 5   Comments: 1

lim_(x→1) ((x(x+(1/x))^5 −32 )/(x−1))

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{x}\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{5}} −\mathrm{32}\:}{{x}−\mathrm{1}} \\ $$

Question Number 223988    Answers: 0   Comments: 0

Solve the DE using the method of Frobenius : (1−x^2 )y′′−2xy′+n(n+1)y=0

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{DE}\:\mathrm{using}\:\mathrm{the}\:\mathrm{method}\:\mathrm{of}\:\mathrm{Frobenius}\::\: \\ $$$$\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\mathrm{y}''−\mathrm{2xy}'+\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\mathrm{y}=\mathrm{0} \\ $$

Question Number 223978    Answers: 0   Comments: 5

Guys my exams are starting from today.Wish me luck!

$${Guys}\:{my}\:{exams}\:{are}\:{starting} \\ $$$${from}\:{today}.{Wish}\:{me}\:{luck}! \\ $$

Question Number 223965    Answers: 2   Comments: 0

Question Number 223964    Answers: 3   Comments: 0

Question Number 223962    Answers: 2   Comments: 1

  Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12      Pg 13      Pg 14      Pg 15      Pg 16   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com