Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 12

Question Number 223461    Answers: 1   Comments: 0

Question Number 223459    Answers: 4   Comments: 0

solve for x∈R (√(25−10x−x^2 ))+(√(15−x^2 ))=2(√5)

$${solve}\:{for}\:{x}\in{R} \\ $$$$\sqrt{\mathrm{25}−\mathrm{10}{x}−{x}^{\mathrm{2}} }+\sqrt{\mathrm{15}−{x}^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{5}} \\ $$

Question Number 223449    Answers: 2   Comments: 0

Question Number 223429    Answers: 2   Comments: 1

....

$$.... \\ $$

Question Number 223424    Answers: 1   Comments: 3

Question Number 223386    Answers: 1   Comments: 0

Question Number 223383    Answers: 3   Comments: 3

Question Number 223374    Answers: 3   Comments: 0

Question Number 223412    Answers: 0   Comments: 4

Good day great problem solvers. Please I need links to resources helpful for preparations for Olympiad mathematics especially books and video recommendations. I′ll be grateful to get our responses.

$${Good}\:{day}\:{great}\:{problem}\:{solvers}. \\ $$$${Please}\:{I}\:{need}\:{links}\:{to}\:{resources}\:{helpful} \\ $$$${for}\:{preparations}\:{for}\:{Olympiad}\:{mathematics} \\ $$$${especially}\:{books}\:{and}\:{video}\:{recommendations}. \\ $$$${I}'{ll}\:{be}\:{grateful}\:{to}\:{get}\:{our}\:{responses}. \\ $$

Question Number 223410    Answers: 0   Comments: 0

Question Number 223405    Answers: 2   Comments: 0

Question Number 223403    Answers: 1   Comments: 1

Question Number 223401    Answers: 1   Comments: 0

Question Number 223414    Answers: 1   Comments: 0

is it possible to prove that mn(m+n)(m−n) divisible by 6 always

$${is}\:{it}\:{possible}\:{to}\:{prove}\:{that}\:{mn}\left({m}+{n}\right)\left({m}−{n}\right)\: \\ $$$${divisible}\:{by}\:\mathrm{6}\:{always}\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 223400    Answers: 1   Comments: 0

f(1)=2025 𝚺_1 ^n f(k)=n^2 .f(n) f(2025)=?

$$\boldsymbol{{f}}\left(\mathrm{1}\right)=\mathrm{2025} \\ $$$$\underset{\mathrm{1}} {\overset{\boldsymbol{{n}}} {\boldsymbol{\sum}}{f}}\left(\boldsymbol{{k}}\right)=\boldsymbol{{n}}^{\mathrm{2}} .\boldsymbol{{f}}\left(\boldsymbol{{n}}\right) \\ $$$$\boldsymbol{{f}}\left(\mathrm{2025}\right)=? \\ $$

Question Number 223368    Answers: 1   Comments: 0

∫_0 ^1 ln(((2 cos(x^2 ) + ln^2 (x/2))/(1 + cos (x/2)))) dx

$$ \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\boldsymbol{\mathrm{ln}}\left(\frac{\mathrm{2}\:\boldsymbol{\mathrm{cos}}\left({x}^{\mathrm{2}} \right)\:+\:\boldsymbol{\mathrm{ln}}^{\mathrm{2}} \left({x}/\mathrm{2}\right)}{\mathrm{1}\:+\:\boldsymbol{\mathrm{cos}}\:\left({x}/\mathrm{2}\right)}\right)\:\boldsymbol{\mathrm{d}}{x} \\ $$$$ \\ $$

Question Number 223367    Answers: 0   Comments: 1

∫_0 ^1 ln(2 cos(x^2 ) + ln^2 ((x/2)) dx

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\mathrm{ln}\left(\mathrm{2}\:\mathrm{cos}\left({x}^{\mathrm{2}} \right)\:+\:\mathrm{ln}^{\mathrm{2}} \:\left(\frac{{x}}{\mathrm{2}}\right)\:\mathrm{d}{x}\right. \\ $$$$ \\ $$

Question Number 223354    Answers: 0   Comments: 6

Question Number 223349    Answers: 0   Comments: 0

let gcd(n,m)=1. Determine gcd(5^m +7^m ,5^n +7^n )

$${let}\:{gcd}\left({n},{m}\right)=\mathrm{1}.\:{Determine}\:{gcd}\left(\mathrm{5}^{{m}} +\mathrm{7}^{{m}} ,\mathrm{5}^{{n}} +\mathrm{7}^{{n}} \right) \\ $$

Question Number 223348    Answers: 1   Comments: 1

Determine gcd(13a+19b,ab) given that gcd(a,19)=gcd(b,13)=1

$${Determine}\:{gcd}\left(\mathrm{13}{a}+\mathrm{19}{b},{ab}\right)\:{given}\:{that}\:{gcd}\left({a},\mathrm{19}\right)={gcd}\left({b},\mathrm{13}\right)=\mathrm{1} \\ $$

Question Number 223346    Answers: 1   Comments: 0

proof gcd(2^m −1,2^n −1)=2^(gcd(m,n)) −1

$${proof}\:{gcd}\left(\mathrm{2}^{{m}} −\mathrm{1},\mathrm{2}^{{n}} −\mathrm{1}\right)=\mathrm{2}^{{gcd}\left({m},{n}\right)} −\mathrm{1} \\ $$

Question Number 223340    Answers: 3   Comments: 1

Question Number 223317    Answers: 3   Comments: 0

Question Number 223315    Answers: 0   Comments: 4

Question Number 223304    Answers: 2   Comments: 0

lim_(x→0) ((∫_0 ^x^2 sin((√t))dt )/x^3 ) =...?

$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\underset{\mathrm{0}} {\overset{{x}^{\mathrm{2}} } {\int}}\boldsymbol{{sin}}\left(\sqrt{\boldsymbol{{t}}}\right)\boldsymbol{{dt}}\:}{\boldsymbol{{x}}^{\mathrm{3}} }\:=...? \\ $$

Question Number 223301    Answers: 2   Comments: 0

  Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12      Pg 13      Pg 14      Pg 15      Pg 16   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com