Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 12

Question Number 222885    Answers: 3   Comments: 0

Question Number 222881    Answers: 2   Comments: 0

∫_0 ^∞ t^a e^(−t) erf(kt)dt,a>0,k>0

$$ \\ $$$$\:\int_{\mathrm{0}} ^{\infty} {t}^{{a}} {e}^{−{t}} \mathrm{erf}\left({kt}\right){dt},{a}>\mathrm{0},{k}>\mathrm{0} \\ $$

Question Number 222879    Answers: 1   Comments: 0

Question Number 222876    Answers: 1   Comments: 0

∫_0 ^1 ∫_(2y) ^2 e^x^2 dxdy=?

$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{2}{y}} ^{\mathrm{2}} {e}^{{x}^{\mathrm{2}} } {dxdy}=? \\ $$

Question Number 222874    Answers: 0   Comments: 0

evaluate the following integral ∫((x^5 ln(x))/((x^2 +1)^3 )) dx

$$\mathrm{evaluate}\:\mathrm{the}\:\mathrm{following}\:\mathrm{integral} \\ $$$$\int\frac{{x}^{\mathrm{5}} \mathrm{ln}\left({x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }\:{dx} \\ $$

Question Number 222867    Answers: 1   Comments: 0

∫_(−π) ^π x sin x cosnxdx

$$\int_{−\pi} ^{\pi} {x}\:\mathrm{sin}\:{x}\:\mathrm{cos}{nxdx} \\ $$

Question Number 222858    Answers: 1   Comments: 1

Prove: ∫_0 ^(1/2) ((arcsin^2 x)/x)dx=((πi)/6)((π^2 /(36))−Li_2 (((1+i(√3))/2)))−(1/3)ζ(3)

$$\mathrm{Prove}: \\ $$$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{arcsin}^{\mathrm{2}} {x}}{{x}}{dx}=\frac{\pi{i}}{\mathrm{6}}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{36}}−\mathrm{Li}_{\mathrm{2}} \left(\frac{\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\right)−\frac{\mathrm{1}}{\mathrm{3}}\zeta\left(\mathrm{3}\right) \\ $$

Question Number 222856    Answers: 1   Comments: 0

find the possible root of x^3 −2x^2 −5x+6=0 using the fixed point iteration method?

$$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{possible}}\:\boldsymbol{{root}}\:\boldsymbol{{of}}\:\boldsymbol{{x}}^{\mathrm{3}} −\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{5}\boldsymbol{{x}}+\mathrm{6}=\mathrm{0} \\ $$$$\boldsymbol{{using}}\:\boldsymbol{{the}}\:\boldsymbol{{fixed}}\:\boldsymbol{{point}}\:\boldsymbol{{iteration}}\:\boldsymbol{{method}}? \\ $$

Question Number 222855    Answers: 1   Comments: 0

Prove:∫_(−π) ^π x ln (1+sin x +cos x)dx=2πG

$$\mathrm{Prove}:\int_{−\pi} ^{\pi} {x}\:\mathrm{ln}\:\left(\mathrm{1}+\mathrm{sin}\:{x}\:+\mathrm{cos}\:{x}\right){dx}=\mathrm{2}\pi{G} \\ $$

Question Number 222850    Answers: 1   Comments: 0

∫_0 ^∞ ((x^(−x) e^(−x) )/(Γ(1−x)))dx

$$\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \frac{{x}^{−{x}} {e}^{−{x}} }{\Gamma\left(\mathrm{1}−{x}\right)}{dx} \\ $$

Question Number 222848    Answers: 1   Comments: 0

∫_0 ^1 ((arcatn^2 x)/x)dx=(π/2)G−(7/8)ζ(3)

$$ \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{arcatn}^{\mathrm{2}} {x}}{{x}}{dx}=\frac{\pi}{\mathrm{2}}{G}−\frac{\mathrm{7}}{\mathrm{8}}\zeta\left(\mathrm{3}\right) \\ $$

Question Number 222847    Answers: 1   Comments: 0

let f(x)=1.013x^5 −5.262x^3 −0.01732x^2 +0.8389x −1.912. Evaluate f(2.279) by first calculating (2.279)^2 ,(2.279)^3 ,(2.279)^4 and(2.279)^5 using four−digit round arithmetic. hence,compute the absolute and relative errors.

$$\boldsymbol{{let}}\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\mathrm{1}.\mathrm{013}\boldsymbol{{x}}^{\mathrm{5}} −\mathrm{5}.\mathrm{262}\boldsymbol{{x}}^{\mathrm{3}} −\mathrm{0}.\mathrm{01732}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{0}.\mathrm{8389}\boldsymbol{{x}} \\ $$$$−\mathrm{1}.\mathrm{912}.\:\boldsymbol{{Evaluate}}\:\boldsymbol{{f}}\left(\mathrm{2}.\mathrm{279}\right)\:\boldsymbol{{by}}\:\boldsymbol{{first}}\:\boldsymbol{{calculating}} \\ $$$$\left(\mathrm{2}.\mathrm{279}\right)^{\mathrm{2}} ,\left(\mathrm{2}.\mathrm{279}\right)^{\mathrm{3}} ,\left(\mathrm{2}.\mathrm{279}\right)^{\mathrm{4}} \boldsymbol{{and}}\left(\mathrm{2}.\mathrm{279}\right)^{\mathrm{5}} \:\boldsymbol{{using}} \\ $$$$\boldsymbol{{four}}−\boldsymbol{{digit}}\:\boldsymbol{{round}}\:\boldsymbol{{arithmetic}}.\:\boldsymbol{{hence}},\boldsymbol{{compute}} \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{absolute}}\:\boldsymbol{{and}}\:\boldsymbol{{relative}}\:\boldsymbol{{errors}}. \\ $$

Question Number 222838    Answers: 2   Comments: 0

Prove:∫_0 ^(1/2) ((ln(2x))/( (√(1+x^2 ))))dx=−(π^2 /(20))

$$\:\:\mathrm{Prove}:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{ln}\left(\mathrm{2}{x}\right)}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx}=−\frac{\pi^{\mathrm{2}} }{\mathrm{20}} \\ $$

Question Number 222845    Answers: 0   Comments: 0

Evaluate; Σ_(k=0) ^n (−1)^k (((2n − k)),(( k)) )

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Evaluate}; \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\:\left(−\mathrm{1}\right)^{{k}} \:\begin{pmatrix}{\mathrm{2}{n}\:−\:{k}}\\{\:\:\:\:\:\:\:\:{k}}\end{pmatrix} \\ $$$$ \\ $$

Question Number 222835    Answers: 0   Comments: 0

Question Number 222830    Answers: 1   Comments: 0

Question Number 222829    Answers: 1   Comments: 0

If f(x) = ((3x + [x])/(2x)) Find lim_(x→−5^+ ) f(x) − lim_(x→−5^− ) f(x) = ?

$$\mathrm{If}\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{3x}\:+\:\left[\mathrm{x}\right]}{\mathrm{2x}} \\ $$$$\mathrm{Find}\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow−\mathrm{5}^{+} } {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{x}\right)\:−\:\underset{\boldsymbol{\mathrm{x}}\rightarrow−\mathrm{5}^{−} } {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:? \\ $$

Question Number 222828    Answers: 1   Comments: 0

vector field F^→ ;R^3 →R^3 , F_h ∈C^ω and Let′s define as A^→ =▽^→ ×F^→ can we find vector field F^→ .....??? Curl and Divergence inverse operator dose exist?? (▽_ ^→ ×)^(−1) A^→ , (▽_ ^→ ∗)^(−1) A^→ ex. ( ((d )/dx))^(−1) =∫

$$\mathrm{vector}\:\mathrm{field}\:\:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}};\mathbb{R}^{\mathrm{3}} \rightarrow\mathbb{R}^{\mathrm{3}} \:,\:{F}_{{h}} \in\mathcal{C}^{\omega} \\ $$$$\mathrm{and}\:\mathrm{Let}'\mathrm{s}\:\mathrm{define}\:\mathrm{as}\:\overset{\rightarrow} {\boldsymbol{\mathrm{A}}}=\overset{\rightarrow} {\bigtriangledown}×\overset{\rightarrow} {\boldsymbol{\mathrm{F}}} \\ $$$$\mathrm{can}\:\mathrm{we}\:\mathrm{find}\:\mathrm{vector}\:\mathrm{field}\:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}.....??? \\ $$$$\mathrm{Curl}\:\mathrm{and}\:\mathrm{Divergence}\:\:\mathrm{inverse}\:\mathrm{operator}\:\mathrm{dose}\:\mathrm{exist}?? \\ $$$$\left(\overset{\rightarrow} {\bigtriangledown}_{\:} ×\right)^{−\mathrm{1}} \overset{\rightarrow} {\boldsymbol{\mathrm{A}}}\:,\:\left(\overset{\rightarrow} {\bigtriangledown}_{\:} \ast\right)^{−\mathrm{1}} \overset{\rightarrow} {\boldsymbol{\mathrm{A}}} \\ $$$$\mathrm{ex}.\:\left(\:\frac{\mathrm{d}\:\:\:}{\mathrm{d}{x}}\right)^{−\mathrm{1}} =\int\: \\ $$

Question Number 222812    Answers: 1   Comments: 0

Question Number 222811    Answers: 1   Comments: 0

∫_0 ^(1/2) ((ln(2x))/( (√(1−x^2 ))))dx

$$\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{ln}\left(\mathrm{2}{x}\right)}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 222805    Answers: 2   Comments: 0

Prove:∫_(−∞) ^∞ J_0 (2x)dx=1

$$\mathrm{Prove}:\int_{−\infty} ^{\infty} {J}_{\mathrm{0}} \left(\mathrm{2}{x}\right){dx}=\mathrm{1} \\ $$

Question Number 222801    Answers: 2   Comments: 0

Question Number 222800    Answers: 1   Comments: 0

Question Number 222799    Answers: 0   Comments: 1

x^x^y =9^(xy) x+y=1

$${x}^{{x}^{{y}} } =\mathrm{9}^{{xy}} \\ $$$${x}+{y}=\mathrm{1} \\ $$

Question Number 222798    Answers: 1   Comments: 0

Question Number 222787    Answers: 1   Comments: 0

∫_1 ^( π/2) ((4^(−x) ∙ e^(tan(x+x^2 )) ∙ ln(1 + x^3 ))/(1 + x)) dx

$$ \\ $$$$\:\:\:\:\:\int_{\mathrm{1}} ^{\:\pi/\mathrm{2}} \:\:\frac{\mathrm{4}^{−{x}} \:\centerdot\:{e}^{\mathrm{tan}\left({x}+{x}^{\mathrm{2}} \right)} \centerdot\:\mathrm{ln}\left(\mathrm{1}\:+\:{x}^{\mathrm{3}} \right)}{\mathrm{1}\:+\:{x}}\:\:\mathrm{d}{x}\:\:\:\:\: \\ $$$$ \\ $$

  Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12      Pg 13      Pg 14      Pg 15      Pg 16   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com